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Abstract—RDMA over Converged Ethernet v2 (RoCEv2) is one of the most popular high-speed datacenter networking solutions.
Watermark is the general term for various trigger and release thresholds of RoCEv2 flow control protocols, and its reasonable
configuration is an important factor affecting RoCEv2 performance. In this paper, we propose ByteTuning, a centralized watermark
tuning system for RoCEv2. First, three real cases of network performance degradation caused by non-optimal or improper watermark
configuration are reported, and the network performance results of different watermark configurations in three typical scenarios are
traversed, indicating the necessity of watermark tuning. Then, based on the RDMA Fluid model, the influence of watermark on the
RoCEv2 performance is modeled and evaluated. Next, the design of the ByteTuning is introduced, which includes three mechanisms.
They are (1) using simulated annealing algorithm to make the real-time watermark converge to the near-optimal configuration, (2)
using network telemetry to optimize the feedback overhead, (3) compressing the search space to improve the tuning efficiency. Finally,
We validate the performance of ByteTuning in multiple real datacenter networking environments, and the results show that ByteTuning
outperforms existing solutions.

Index Terms—Remote Direct Memory Access, RDMA over Converged Ethernet v2, Explicit Congestion Notification, Priority-based
Flow Control, Datacenter Networking

✦

1 INTRODUCTION

R EMOTE Direct Memory Access (RDMA) is one of the
most important and effective solutions for high-speed

datacenter networking (DCN) [1]. It offers low latency and
high throughput with unique features including protocol
offloading and memory semantics [2]. Protocol offloading
refers to offloading the network protocol onto the RDMA
NICs (RNICs), which greatly reduces CPU overhead. Mem-
ory semantics provides the capabilities to access remote
memory directly bypassing kernels of both sides, without
remote CPU involvement. RDMA has been widely used in
cloud computing and high-performance computing, such
as distributed storage [3] and machine learning [4], by
Microsoft [5], [6], Google [7], Alibaba [8], [9], [10], Huawei
[11], and ByteDance [12], etc.

RDMA has higher requirements for network perfor-
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mance, such as high speed, low latency, and zero packet loss
[13]. The two major characteristics of traditional Ethernet,
best-effort forwarding and congestion-loss tolerance, are
difficult to meet the performance requirements of RDMA.
Currently, RDMA over Converged Ethernet v2 (RoCEv2) is
the most popular Ethernet solution carrying RDMA [14].
It uses two flow control technologies, Explicit Congestion
Notification (ECN) and Priority-based Flow Control (PFC),
to achieve network lossless [15]. In addition, DCQCN [16]
is a popular RoCEv2-oriented ECN/PFC-based congestion
control (CC) algorithm. The operation of ECN/PFC depends
on several parameters, which are collectively referred to as
watermark in the industry. Proper watermark configuration
for ECN/PFC is the crux to ensuring lossless and low-
latency of RDMA network [17].

Most RoCEv2 switches have opened the ECN/PFC wa-
termark configuration interfaces to data center operators,
who can apply their own watermark configuration solu-
tions according to network scale, interconnection topology,
traffic patterns, etc. The existing watermark configuration
solutions can be divided into the following four categories:
(i) is the default solution recommended by the switch
equipment manufacturer, (ii) is the solution [18] derived
from the DCTCP/DCQCN theoretical model or engineering
experience, (iii) is the solution represented by AI-ECN that
searches for the best watermark configuration by analyz-
ing the taffic model and building a test environment for
manual or automated watermark tuning, (iv) is the solution
represented by ACC [19] that searches for the near-optimal
watermark configuration through distributed reinforcement
learning. These solutions have their own shortcomings. (i)
tends to pursue reliability and conservatism, resulting in
the inability to achieve near-optimal network performance.
The theoretical model of (ii) usually assumes fixed net-
work properties (e.g., number of flows, RTT, hop count),
which does not conform to the time-varying situation of
the real datacenter networking. The cost of (iii) is extremely
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expensive, and the tuning success rate and efficiency are
low. (iv) is the best watermark tuning solution at present,
but the asynchronous tuning strategy can easily cause the
mutual interference between switches, thereby affecting the
tuning efficiency [20]. All switches lack the rhythm of action
for synchronous tuning, and make their own decisions but
share feedback affected by other switches, which is also an
important problem that distributed reinforcement learning
is difficult to converge.

How to implement RoCEv2 watermark tuning automat-
ically and optimally is the goal of this paper. The work and
innovations of this paper are as follows:

(1) This paper reports three typical cases of network per-
formance degradation caused by non-optimal or improper
watermark configuration, and traverses the RoCEv2 water-
mark configuration space in three scenarios to demonstrate
the necessity of watermark tuning.

(2) This paper proposes ByteTuning, a lossless network
watermark tuning mechanism based on centralized feed-
back control. ByteTuning collects real-time network status
information through network telemetry, uses simulated an-
nealing algorithm to make the watermark configuration
parameters approach near-optimal, and supports full-link
network performance tuning from server to switch. In ad-
dition, ByteTuning simplifies the watermark configuration
search space and improves tuning efficiency by minimizing
interface coverage sets, data aggregation, and configuration
language translation.

(3) This paper uses RDMA Fluid to model the relation-
ship of watermark configuration to the network, and eval-
uates the impact of ECN and PFC watermark on network
throughput, packet loss, and convergence.

(4) This paper evaluates the tuning performance of
ByteTuning in the real data center of ByteDance through
standard tests, Redis storage, Multi-host RNICs and other
experiment scenarios. The results show that ByteTuning
outperforms all existing solutions.

The rest of this paper is organized as follows: Sec. 2
introduces the relevant background and real cases, illustrat-
ing the necessity of watermark tuning. Sec. 3 investigates
the configuration principles and representative solutions of
ECN and PFC. Sec. 4 establishes the ECN/PFC watermark
model based on Fluid, and evaluated the impact of water-
mark parameters on queues and packet loss. Sec. 5 elabo-
rates on the design details of ByteTuning. Sec. 6 evaluates
the performance of ByteTuning in several scenarios. Sec. 8
discusses the pros and cons of distributed and centralized
tuning.

2 BACKGROUND

In this section, first, we briefly describe the development of
the RoCEv2 network and several influencing factors of its
watermark configuration. Then, we report on three typical
cases of misconfiguration of watermarks that occurred in
real data centers. Finally, we traverse the watermark con-
figuration space and analyze the results in three scenarios,
proving the necessity of watermark tuning.

2.1 RoCEv2 and Watermark Configuration
Originally, RDMA was carried over the InfiniBand [21],
which realizes high-throughput and low-latency lossless

networking with credit-based flow control and simplified
transmission protocols. In 2010, IBTA released RoCE, also
known as InfiniBand over Ethernet (IBoE), which aims to
replace the TCP/IP Network Layer with the InfiniBand
Network Layer over the Ethernet Link Layer. In 2014, IBTA
proposed RoCEv2 [22], using UDP/IP for transmission to
solve the scalability problem of RoCE. In 2015, the Data
Center Bridging (DCB) protocol suite was established, in-
cluding IEEE 802.1Qbb Priority-based Flow Control (PFC),
IEEE 802.1Qaz Enhanced Transmission Selection (ETS) and
Data Center Bridging eXchange (DCBX), and IEEE 802.1Qau
Congestion Notification. DCB is an enhancement to tradi-
tional Ethernet, also known as lossless Ethernet, that makes
RoCE performance comparable to InfiniBand [23].

In order to achieve lossless transmission, as shown in
Fig. 1(a-b), RoCEv2 introduces multiple flow control mech-
anisms such as ECN [24] and PFC [16]. ECN relies on switch
to mark congested flows to achieve precise rate decrease at
the sender. PFC extends the standard IEEE 802.3x PAUSE
frame to include IEEE 802.1p Class of Service values. It
can create 8 virtual channels on an Ethernet link, allowing
to pause and restart any one of the virtual channels inde-
pendently [25]. Both ECN and PFC take effect according
to the current queue length, containing multiple trigger
thresholds, which are collectively called watermark.

From the perspective of switch chips, in order to coordi-
nate the rate between different network devices and obtain
the best forwarding throughput and switching latency [26],
as shown in Fig. 1(d), most of the switch chips adopt the
shared-memory architecture, in which all input and output
ports share the one memory. All exchanged data is stored
and forwarded in the memory. The minimum unit of mem-
ory is Cell, e.g., the Cell size of the Broadcom Trident 3 is
256 B, and the total memory size is 32 MB. The memory
management unit (MMU) is the core of the switch chip,
and uses registers to count the logical queue length on
the memory [27]. According to the purpose, the memory is
divided into three parts, namely Guaranteed Buffer, Shared
Buffer and Headroom Buffer [28].

(1) Guaranteed Buffer: A fixed buffer that provides a
minimum memory guarantees for all physical ports.

(2) Shared Buffer: A shared buffer that can be preempted
by all flows of any physical interface and queue priority.

(3) Headroom Buffer: A fixed buffer that stores in-transit
traffic during PFC has been triggered but not yet in effect.

How to properly configure ECN/PFC watermark is the crucial
issue to efficiently utilize memory resources and ensure RoCEv2
network performance. Intuitively, when ECN/PFC watermark
is higher, the switch queue length is longer, and the CC
is triggered later, the network throughput is larger, the
switching latency is larger, and the packet loss probability
is higher. However, there are many factors that affect the
actual effect of watermark, resulting in an unsatisfactory
relationship between RoCEv2 network performance and
watermark configuration. In general, watermark configura-
tion usually refer to network topology, traffic patterns, QoS
requirements, and chip design.

(1) Network Topology: The interconnection topology,
interface speed, and communication distance are the basic
considerations for watermark configuration. With a fixed
end-to-end latency, setting an excessively large ECN thresh-
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Fig. 1. Summary of mechanisms and watermarks in RoCEv2 network

old will increase the number of in-flight packets and the
probability of congestion loss.

(2) Traffic Pattern: Many-to-one1 Incast traffic pattern
is common in cloud computing and high-performance
computing [29]. In such scenarios, whether ECN can be
quickly marked, whether PFC can take effect reasonably,
and whether the DCQCN can respond quickly to avoid
burst traffic to blow up the switch memory are important
considerations for watermark configuration. In the burst
scenario of multi-flow line-speed startup, the time T re-
quired for the buffer of the switch connected to the receiver
to fill up is

T =B/(N×R). (1)

Where B is the memory size of the switch, and the ToR
switch is usually 32 MB. N is the number of flows, and R is
the RNIC rate. Taking a 240-to-1 Incast as an example, when
the R is 25 Gbps, it only needs 42.66 us to blow up the
ToR switch. If the DCQCN/ECN/PFC does not take effect
enough within this period, packet loss is very likely to occur.

1. We use m-to-n to represent the pattern in which m senders send
traffic to n receivers.

(3) QoS Requirement: In general, a high watermark
seems to imply high bandwidth and high switching latency.
Therefore, it is also an important consideration to meet
the differentiated demands of the QoS on throughput and
latency [30].

(4) Chip Design: Taking ECN as an example, its water-
mark parameters Kmin and Kmax can usually be configured
by referring to the network bandwidth-delay product (BDP).
E.g., Kmin is less than the expected BDP, and Kmax is less
than or equal to the tolerable BDP. However, the switch
chip usually measures the current queue length by software
polling, and calculates the current ECN marking probability
p(t) by exponentially averaging the current queue length
and the historical queue length. This results in p(t) being
non-continuous, and thus, the actual marking probability
changes lag the current queue length changes, which is a de-
viation from the theoretical model of DCQCN. In addition,
different switch equipment manufacturers have different
understandings of switch chips, resulting in inconsistent
performance of the same watermark configuration in data
centers built with switches of different brands and switch
chips of different types.
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TABLE 1
Comparison of three cases

Case # Type Performance Root Case Solution

I Non-Optimal Persistent Loss Kmax > XOFF Reduce the Kmax of Leaf Switch
II Improper Occasional Loss RDMA Incast Reduce the XOFF of ToR Switch
III Non-Optimal Unfair Slowdown TCP/RDMA mixed running Increase ECN/PFC watermark
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Fig. 2. Distribution of machines running BytePS and the traffic charac-
teristics

2.2 Analysis of Three Cases of Non-Optimal or Im-
proper ECN/PFC Watermark Configuration

We report and analyze three ECN/PFC watermark config-
uration cases, which are common in real DCNs, indicating
that incorrect or inappropriate ECN/PFC watermark con-
figuration has a great impact on network performance, as
shown in Tab. 1.

Case I: Improper watermark configuration leads to
serious packet loss

BytePS [31] is an improved distributed training frame-
work for the traditional Parameter Server algorithm, in-
cluding GPU Computation, Summation Service (SS) and
Communication Service (CS). Inter-machine communication
takes place between CS and SS. Due to uneven distribution
of machines, RDMA line-speed startup, huge model param-
eters, and n-to-n communication model, network congestion
is very difficult to avoid. At this time, improper watermark
configuration is more likely to cause network crashes. As
shown in Fig. 2, in a BytePS cluster, we observe that the
uneven machine distribution resulted in a large amount of
packet loss, with the peak rate of 300 K/s. Furthermore,
the CPU machine has extremely low throughput and re-
ceives many PFC frames, which seriously affects the train-
ing speed. We investigate that the improper configuration
(Kmax is too large) of ECN watermark caused PFC to be
triggered when the queue length did not exceed the Kmax.
Since PFC is not enabled on the Spine switch, packet loss
occurs in the inbound direction of the upstream interface of
the Leaf switch on the CPU machine (SS) side.

Case II: Specific traffic patterns leads to occasional
Egress packet loss

We observe a small amount of packet loss in the RDMA
queue of a ToR switch when the Egress queue is not full.
The reason is that in the traffic pattern such as n-to-1 RDMA

Incast, when there are enough senders or PFC watermark is
high, the traffic arriving from the first few interfaces of the
switch cannot trigger PFC, and the traffic arriving later will
not be buffered in the Headroom Buffer, but Shared Buffer.
If the Shared Buffer and the Guaranteed Buffer of the Egress
interface are filled at the same time, the Egress interface
will lose packets. We mitigate packet loss by lowering PFC
watermark XOFF of the Ingress RDMA queue.

Case III: TCP/RDMA mixed running leads to unfair
slowdown

Although RDMA and TCP are differentiated by different
priorities on the same interface, they share the same ex-
change buffer. We observe that bursty TCP will occupy more
buffers and affect RDMA throughput [32]. In a cluster with 8
servers running Allreduce training, (i) when there is no TCP,
the RDMA throughput is about 135 Gbps; (ii) when there
is TCP (∼10 Gbps), the RDMA throughput drops to 102
Gbps, with 40 K/s PFC frames; (iii) when the RDMA-TCP
WRR weight is 99:1, the actual throughput ratio of RDMA-
TCP is 89:11. We alleviate this unfair slowdown issue by
excessively reducing the WRR weight and WRED threshold
of TCP queues or Increasing ECN/PFC watermark. The root
cause of this issue is that TCP and RDMA use different CC
algorithms. The unfairness between flows also occurs when
different brands of RNICs or different RDMA CC algorithms
coexist.

The above three cases demonstrate the importance of
ECN/PFC watermark configuration to network perfor-
mance. Therefore, given the network topology, traffic pat-
tern and QoS requirement, how to find the optimal water-
mark configuration scheme in the current scenario is vital.

2.3 Analysis of Three Traversal Results of ECN/PFC
Watermark Configuration

We select five crucial ECN/PFC parameters presented in
Fig. 1., including Kmin, Kmax, Pmax, headroom, and α2,
and traversed their different combinations to observe the
impact on throughput, queue length, and flow completion
time (FCT) under the three scenarios.

The experiment environment includes 24 servers with
Mellonax CX5 25GE RNIC, four H3C S6850 25GE ToR
switches and two H3C S9820 100GE Leaf switches. The
OFED version is 5.2. The CC algorithm is DCQCN and
its parameters are recommended by Mellanox. The traf-
fic generation tool is Perftest. The benchmark is an
experience-based watermark solution deployed massively
by ByteDance. The traversal space of ECN watermark is as

2. α is a parameter provided by the Broadcom switch chip to dynam-
ically manage the PFC. Readers can refer to the design description of
the Broadcom chip. It can simply be said that the smaller the α, the
earlier the switch triggers the PFC. It should be noted that α here is
different from α in the DCQCN algorithm.
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(b) Throughput and Queue when 24-to-1 RDMA Incast
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Fig. 3. The traversal result on the many-to-one scenario

follows: Kmin∈{0, 500, 1000, 1500, 2000, 2500, 3000, 3500,
4000, 4500, 5000}, Kmax = Kmin+500, Pmax∈{1, 10, 20,
30, 40, 50, 60, 70, 80, 90}. The traversal space of PFC wa-
termark is as follows: α ∈ {1, 3, 5, 11, 20}, heamroom ∈
{100, 200, 300, 400, 500, 600}. The traversal space size is
3300.

Scene I: 2-to-1
The number of QPs for each sender is 10, and the

message size is 1024 KB. The traversal results are shown
in Fig. 3(a), and the key conclusions are as follows.

(1) The benchmark solution is not the optimal. For
throughput performance, 11.09% (366/3300) of the combi-
nations surpass the benchmark, with a maximum improve-
ment of 2.11%. For queue performance, 16.36% (540/3300)
of the combinations outperform the benchmark, and the
near-optimal queue length is 0. 7.00% (231/3300) of the
combinations outperform the benchmark in both metrics.

(2) High ECN watermark does not exactly equal high
throughput. When α= 1, the throughput corresponding to
Kmin = 4500 is only 81.02% (∼22.22 Gbps) of the high-
est throughput, and Kmin = 5000 is only 75.78% (∼19.48
Gbps). We believe that too large Kmin and too small α will
lead to premature triggering of PFC, resulting in decreased
throughput.

(3) Certain special ECN/PFC watermarks can aggra-
vate unfair slowdowns and victims between flows. When

α = 1 and Kmin = 5000, the throughputs of the two
senders always converge to 14.21 Gbps and 9.43 Gbps at
some moments. We guess that this is related to the DC-
QCN/ECN/PFC mechanism, i.e., there are some extreme
cases, and the throughput of different flows cannot jump
out of injustice.

Scene II: 24-to-1 RDMA Incast
The number of QPs for each sender is 50. The burst

interval is 1000 us, and each burst is 64 KB. Each burst FCT
and IOPS are counted, as shown in Fig. 3(b) and Fig. 3(c),
and the key conclusions are as follows.

(1) The benchmark solution is not the optimal. For
throughput, 69.87% (2306/3300) of the combinations sur-
pass the benchmark, with a maximum improvement of
10.39%. For queue, 10.33% (341/3300) of the combinations
outperform the benchmark, and the near-optimal queue
length is 0. 1.57% (231/3300) of the combinations outper-
form the benchmark in both metrics. For burst FCT, 14.48%
(478/3300) of the combinations surpass the benchmark. The
benchmark time is 136.4ms (i.e., IOPS = 7.32), and the short-
est is 117.9 ms (i.e., IOPS = 8.4) with a 13.53% improvement.

(2) The proper watermark solution can optimize FCT. On
the Incast scenario, although the low watermark can achieve
a shorter queue length and thus reduce the switching la-
tency, it can easily lead to low throughput. This usually
doesn’t trigger PFC, but the low throughput results in



SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING 6

RoCEv2

Receiver

1
PCIe Slot

CPU

RAM

2
PCIe Slot

CPU

RAM

PCIe Cables

Sender-2

Sender-1

TX-PFC Pause

Fig. 4. Experiment topology on the Multi-host scenario

longer FCT.
(3) For RDMA Incast, the importance of the watermark

of PFC is higher than that of ECN. Based on the data in Fig.
3(c), the Beta Coefficient obtained by Stepwise Regression
on headroom, α, Kmin, Pmax, and FCT is [-802.29, -
3858.92, 0, 0]. This means that ECN alone cannot avoid
packet loss caused by DCQCN line-speed startup, and PFC
plays a decisive role at this time.

Scene III: Multi-host RNIC
As the network speed reaches 100/200/400+ GE, which

is close to the bus bandwidth of PCIe, QPI, xGMI, etc.,
the RNIC [33] becomes a potential congestion point [34].
Meanwhile, Servers typically deploy two or more PCIe
slots. The Multi-host technology separates the PCIe bus of
the RNIC into multiple independent interfaces, allowing
multiple computing or storage hosts to use multiple PCIe
channels and one RNIC to access the network [35]. E.g.,
the Mellanox CX-6 Dx SmartNIC implements multi-channel
bandwidth division through Virtual Output Queue [36] and
Host Management, and uses a shared Ingress buffer to
accommodate burst traffic when the incoming rate exceeds
what the host can receive. Although this can reduce CPU
access latency and save costs, the performance of inter-
flow isolation and fairness is poor. The symptom is that the
many-QP flow triggers TX-PFC causing the less-QP flow to
become the victim flow [37].

TX-PFC is the PFC PAUSE frame that actively requests
the upstream switch to suspend sending traffic after the
receiving RNIC detects that the current receiving buffer
exceeds the threshold. In most TX-PFC cases, the PCIe bus
is congested, and the root cause is cross-NUMA access, long
PCIe path, cache miss, etc. TX-PFC can easily lead to PFC
Storm and PFC Deadlock [38], so avoiding triggering TX-
PFC is an important goal of Multi-host RNIC. In order to
achieve this goal, Mellanox CX-6 Dx introduces Multi-host
NIC-ECN, which extends the ECN function from the switch
to the receiving RNIC, to actively mark and avoid triggering
TX-PFC.

We verify the impact of different Multi-host NIC-ECN
watermarks on throughput fairness. The experiment topol-
ogy is shown in Fig. 4, where the two yellow flows are 500
QPs RDMA traffic, the red flow is 1 QP RDMA traffic, and
the receiving RNIC is a 100 GE Mellanox CX-6 Dx RNIC
with two Physical Functions (PFs). The traversal results are
shown in Fig. 5, and the key conclusions are as follows.

(1) The total throughput of the receiving RNIC is much
lower than the expected throughput of 100 Gbps, with a
minimum of 54.91 Gbps. Since the yellow flow can easily
trigger TX-PFC, the red flow is unreasonably blocked on the
ToR switch. The total throughput of all watermarks is less
than 75.34 Gbps (i.e., the total throughput of yellow flow is
less than 48.28 Gbps, and that of red flow is less than 27.06
Gbps).

(2) As the Kmin increases, the network throughput
decreases slightly. The highest throughput of Kmin =
256/512/1024 is reduced by 0.95/1.27/1.90% than that of
Kmin=64.

In summary, optimizing the ECN/PFC watermark is
an effective way to improve the performance of RoCEv2
networks.

3 RELATED WORK

In this section, we introduce the watermark configuration
principles in industry and the typical solutions in academia
about ECN and PFC respectively.

3.1 Existing ECN watermark configuration principles
ECN reuses the judgment and processing of Weighted
Random Early Detection (WRED) [39]. When the Egress is
congested, the ECN-enabled packets will be marked with
ECN=11 according to the marking probability at the Ingress.
ECN parameters include low marking threshold Kmin, high
marking threshold Kmax, and marking probability Pmax.
The existing ECN watermark configuration usually refers to
the following strategies:

(1) Watermark configurations are usually static and sym-
metrical. Switches at the same level use the same watermark
configuration.

(2) It uses fixed topology, fiber length, hop count and
traffic pattern to calculate watermark parameters under
extreme congestion.

(3) The actual watermark is usually obtained through
manual fine-tuning of the calculation results.

3.2 Typical ECN watermark configuration solutions
In 2010, Alizadeh et al. [40] proposed DCTCP, which is an
early use of ECN for datacenter networking. DCTCP gives
the lower bound of the marking threshold K :

K>(C×RTT )/7. (2)

Where C is the bandwidth of the bottleneck link. But this is
calculated under the coexistence of N long flows with the
same RTT. Considering the micro-burst and the feedback
delay, DCTCP adopts fixed thresholds of K = 20 and
K = 50(∼58.5 KB) for 1 GE and 10 GE respectively in the
experiment. DCTCP also recommends to determine the real
RTT through large-scale network measurement, and then
calculate appropriate K .

In 2012, Wu et al. [41] observed that a higher ECN
threshold would increase long-flow throughput, and a
lower threshold would ease TCP Incast, so they proposed a
threshold calculation solution, ECN∗ based on the transient
length of the egress queue. ECN∗ believes that the marking
threshold should be set to
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Fig. 5. The traversal result at different Kmin on the Multi-host scenario

TABLE 2
Comparison of ECN watermark solutions

Solution (Year) Principle Recommended Value
Kmin Kmax Pmax

DCTCP (2010) Kmax=Kmin>(C×RTT )/7. 58.5 KB (10 GE) 100%

ECN* (2012) Kmax=Kmin=BDP/MTU=T×C/MTU. —— —— 100%

DCQCN
(2015) Based on experience. 5 KB

(40 GE)
200 KB
(40 GE) 1%

MQ-ECN (2016) Kmax=Kmin=min(Quantum/Tround,C)×RTT×λ. —— —— ——

DCTCP-DEMT
(2018)

If N ≤ C×D/2, Kmax = Kmin = C×D; if N ≥ C×D,
Kmax=Kmin=0; Otherwise, Kmax=Kmin=2C×D−2N .
Where N is the number of flows, D is the end-to-end
latency.

—— 10.8 KB
(10 GE) 100%

DCTCP-PMSB
(2018)

Ki =
wi∑ni

q=1 wq
×Ci×RTT×λ, ni is the number of switch

interfaces, wq is the queue weight. —— —— ——

HPCC (2019)
Refer to DCTCP. 30 KB (10 GE) 100%

Refer to DCQCN. 100 KB
(25 GE)

400 KB
(25 GE) ——

P-PFC (2020) Refer to DCQCN. 40 KB 200 KB 100%

ACC (2021) Dynamic tuning via distributed deep reinforcement
learning. —— —— ——

K=
BDP

MTU
=

T×C

MTU
. (3)

The above fixed threshold solutions are all for a single
queue. In 2016, Bai et al. [42] observed that under the fixed
threshold strategy, the queuing latency increased signifi-
cantly with the number of queues (e.g., the average RTT
of 8-queue network is ∼7X that of single-queue network),
so they proposed MQ-ECN for multi-queue multi-priority
network. The marking threshold Ki for each queue is

Ki = min(
Quantum

Tround
,C)×RTT × λ, (4)

where Quantum is the total number of bytes sent in a
round, Tround is the total time spent polling all queues.

In 2019, Zhang et al. [43] found that RTT is not fixed,
and the maximum fluctuation reaches +268%. Using a large
RTT to calculate the threshold will cause the queue to
accumulate, which will significantly increase the switching
latency (e.g., for Web Search, adopting P90 RTT (∼250 KB) as
the ECN threshold results in a 119.2% increase in short-flow

P99 FCT, and adopting the average RTT (∼100 KB) results
in an 8% decrease in throughput.). They proposed ECN#,
which inherits the marking strategy based on the transient
queue length of ECN∗, and actively marks to eliminate
unnecessary queuing latency as the queue accumulate.

In 2021, Wang et al. [19] proposed an ECN watermark
tuning algorithm ACC based on multi-agent reinforcement
learning, in which each switch acts as an agent and dynam-
ically adjusts its own watermark to maximize the expected
throughput reward.

In addition, there are some research works related to
ECN watermark tuning. They reconstruct the ECN marking
strategy from the perspective of resource allocation and fair-
ness guarantee when different interfaces, queues or flows
share the switching buffer. In 2017, Shan et al. [44], [45]
found that microbursts cause ECN over-marking, thereby
resulting in sender over-reaction and throughput collapse.
They proposed CEDM to distinguish between transient and
long-term queue increases by tracking the change rate of
queue length. In 2019, Majidi et al. [46] proposed the Deep-
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TABLE 3
Comparison of PFC watermark solutions

Solution (Year) Principle Recommended Value
Kpfc P duration headroom α

DCQCN
(2015)

PFC trigger threshold Kpfc = β(B − 8n ×
Tflight−s)/8n, where β is the dynamic thresh-
old for the Trident II chip, equivalent to α. s is
the instantaneous buffer occupancy, n is the
number of interfaces, Tflight is equivalent to
headroom. Assume that the MTU is 1500 B
and the network speed is 40 GE.

24.47 KB —— 22.4 KB β = 8

HPCC (2019) Based on recommendations from switch
equipment vendors. —— —— —— 1/8

P-PFC
(2020)

P duration=B ×P/V , where B is the buffer,
which is 9 MB; P is the number of switch
ports, which is 16; V is the network speed,
which is 40 GE.

200 KB 112.5 us —— ——

RL-a, which achieves an optimal per-interface ECN marking
strategy based on deep reinforcement learning (DRL). They
[47] further employed machine learning to optimize the
marking thresholds for elephant and mouse flows, respec-
tively. In 2021, Huang et al. [48] proposed a buffer-aware
fair marking algorithm BFEM for the interface starvation
problem caused by per-interface ECN, which punishes the
attacker flow that occupies Share Buffer excessively.

3.3 Existing PFC watermark configuration principles

PFC is an enhancement to traditional PAUSE flow con-
trol [49]. Its watermark parameters include Headroom
Threshold, PFC Guaranteed Threshold, Back-Pressure Trig-
ger Threshold, Offset Threshold, etc.

(1) Headroom: A threshold that determines the buffer
used to store in-flight packets for the period of time after
PFC is triggered and before PFC takes effect. The industry
usually refers to the following equation to determine the
Headroom.

Headroom=MTUR+2×Linkdelay+MTUS+RESP. (5)
Where MTUR is the transmission latency of the switch chip
waiting for the large packet to be sent before sending the
PFC PAUSE frame. Linkdelay is the one-way propagation la-
tency (e.g., the latency for the upstream switch to receive the
PAUSE frame). MTUS is the transmission latency required
by the upstream switch to send a large packet. RESP is
the latency required by the upstream switch to process the
PAUSE frame. This equation is known to be conservative
and often leads to idle waste of buffer.

(2) PFC Guaranteed: A threshold that determines the
per-interface exclusive buffer used to guarantee basic for-
warding (e.g., PG GUAR LIMIT in Fig. 1(b)). If the PFC
Guaranteed Threshold is too small, packets will be lost
when PFC takes effect.

(3) Back-Pressure Trigger: A threshold that determines
the upper limit of Shared Buffer usage for RDMA traffic
(e.g., XOFF in Fig. 1(b)). This threshold is divided into two
types: dynamic and static. Usually, the dynamic threshold α
is used to allocate the proportion of available Shared Buffer
for each interface or queue.

The existing PFC watermark configuration usually refers
to the following strategies:

(1) PFC is usually restricted inside the Pod [50], that is,
the Spine switch does not enable the PFC function to avoid
PFC Storm and PFC Deadlock, as shown in Fig. 2.

(2) PFC watermark is usually higher than ECN, to avoid
PFC taking effect before ECN.

3.4 Typical PFC watermark configuration solutions
In 2020, Tian et al. [51] proposed Predictive PFC (P-PFC),
similar to CEDM, which actively triggers PFC PAUSE by
monitoring the severity of buffer growth. Therefore, P-PFC
can quickly respond to transient congestion, keep buffer
occupancy low and control tail FCT. In addition, P-PFC
adopts a conservative buffer growth prediction algorithm,
which has a low false alarm rate. That is to say, unless the
traditional PFC may trigger PAUSE with a high probability,
P-PFC will not trigger PAUSE to damage throughput and
latency. In addition, Cui et al. [52] designed a priority-
aware flow control mechanism G-PFC, to prevent high-
priority flow from head-of-line blocking when low-priority
flow causes congestion. Shanet al. [53] propose dynamic and
shared headroom allocation scheme, which dynamically
allocates headroom to congested queues and enables the
allocated headroom to be shared among different queues.

In general, As summarized in Tab. 2 and 3, these so-
lutions either need to change the software and hardware
to reconstruct ECN/PFC, or lack flexibility to deal with all
scenarios.

4 MODEL

In this section, we use RDMA Fluid to model the packet loss
probability and quantity during the convergence process
of line-speed startup for N RDMA flows, and analyze
the impact of the watermark combination of ECN/PFC on
throughput and queues. All parameters are shown in Tab.
4. In particular, we explore the cause of early-transmission
packet loss during RDMA Incast due to the mismatch be-
tween DCQCN/ECN/PFC3.

3. In this section, only Kpfc is used to represent the PFC triggering
threshold to simplify the model.
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TABLE 4
Simulation parameters of the RoCEv2 Fluid model

Parameters Value Explanation

S 1 KB Packet size.

C 40 Gbps Bandwidth of bottleneck link.

N 2, 4, 8 Number of RDMA flows at bottleneck.

B 1000 KB Buffer size, corresponding to 1000 packets.

αD 1 Rate reduction factor, updating according to DCQCN algorithm.

RAI 40 Mbps Rate increase step, an additional increase of the target rate in the DCQCN fastrecovery phase.

ByteCounter 100 MB Byte counter for rate increase, corresponding to 10000 packets.

T imer 55 us Time counter for rate increase, fixed value.

F 5 Fast recovery steps, fixed value.

g 1/256 AdjustmentparameterforαD , fixed value.

τ 50 us Receiver response period, within which Receiver generates at most 1 CNP.

τ∗ 85 us Feedback latency, which is the sum of RTT and receiver response period.

τ
′

55 us Acceleration interval, within which if no CNP is received, Sender decreases αD .

Kmin 5 KB ECN low marking threshold, corresponding to 5 packets.

Kmax 200 KB ECN high marking threshold, corresponding to 200 packets.

Pmax 10% ECN marking probability.

Kpfc 300 KB PFC trigger threshold, corresponding to 300 packets.

Tpfc 838 us PFC pause duration. The default value of the switch is the time required to forward
65535×512 bits, which corresponds to 838 us for 40 GE.

Three Incast scenarios with different traffic scales are
considered:

(1) For a small traffic scale, Kmin < q(t) = N ×RC −
C <Kpfc is satisfied. At this time, the congested flow only
triggers ECN and does not trigger PFC.

(2) For a medium traffic scale, Kpfc<q(t)=N×RC−C<
B or dq

dt ×RTT < B is satisfied, where B is the maximum
buffer size of the bottleneck switch. At this time, the con-
gested flow slowly triggers ECN and PFC, both of which
take effect, and there is no packet loss.

(3) For a massive traffic scale, which is discussed later in
this section, Kpfc<B<q(t)=N×RC−C or B< dq

dt×RTT is
satisfied. At this time, ECN has been marked but CNP has
not taken effect, and the congested flow triggers PFC.

At the bottleneck switch, the ECN trigger probability
pecn is

pecn =


0, q(t) < Kmin

q(t)−Kmin

Kmax−Kmin
Pmax, Kmin < q(t) < Kmax.

1, q(t) > Kmax

(6)

The PFC trigger probability ppfc is

ppfc =

{
1, q(t)>Kpfc

0, q(t)<Kpfc.
(7)

We consider that the ToR and Leaf switch enable the
ECN/PFC function, and the Spine switch only enables the
ECN function (see Fig. 2). Packet loss occurs only on the Leaf
switch on the receiving side. In particular, the condition for
packet loss is that the queue occupancy exceeds the total

available buffer space. The queue change of the bottleneck
switch (Leaf switch) is

dq

dt
=N ×RC(t)−C(1−ppfc(t)). (8)

And the queue change of the ToR switch on the receiving
side is

dq

dt
=N×RC(t)(1−ppfc(t))−C. (9)

Since the parameter αD in the DCQCN includes two up-
date strategies, they are αD=(1−g)αD+g and αD=(1−g)αD .
Wherein, the update condition of the former is that the
sender receives a valid CNP, and the update condition
of the latter is that the sender has not received the CNP
continuously. Therefore, the update trend of αD is

dαD
dt

=
g

τ ′ ((1−(1−p(t−τ∗))τ
′
RC(t−τ∗))−αD(t)). (10)

In addition, the update of the per-flow target rate RT

includes two cases, corresponding to the deceleration phase
and acceleration phase of DCQCN, in which the acceleration
phase is divided into Fastrecovery and Additiveincrease
according to different acceleration strategies. Among them,
when deceleration, the variation of RT is RT −RC ; when
Fastrecovery, the variation of RT is 0; when Additivein-
crease, the variation of RT is RAI . The trigger condition of
the Additiveincrease stage is that Timer and ByteCounter
are not all greater than F or not all less than F . Therefore,
the update trend of the RT is
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(a) 2 flows, initial rate 20 Gbps, target rate 20 Gbps
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(b) 2 flows, initial rate 40 Gbps, target rate 40 Gbps
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(c) 4 flows, initial rate 10 Gbps, target rate 10 Gbps
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(d) 4 flows, initial rate 40 Gbps, target rate 40 Gbps
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(e) 8 flows, initial rate 5 Gbps, target rate 5 Gbps
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(f) 8 flows, initial rate 40 Gbps, target rate 40 Gbps
Fig. 6. Simulation results of the Fluid model under different startup scenarios

dRT

dt
=−RT (t)−RC(t)

τ
(1−(1−p(t− τ∗))τRC(t−τ∗))

+RAIRC(t−τ∗)
1−p(t−τ∗)FBp(t−τ∗)

(1−p(t−τ∗))−B−1

+RAIRC(t−τ∗)
1−p(t−τ∗)FTRC(t−τ∗)p(t−τ∗)

(1−p(t−τ∗))−TRC(t−τ∗)−1
.

(11)

The update trend of the per-flow actual rate RC is
dRC

dt
=− RC(t)αD(t)

2τ
(1−(1−p(t−τ∗))τRC(t−τ∗))

+
RT (t)−RC(t)

2

RC(t−τ∗)p(t−τ∗)

(1−p(t− τ∗))−B−1

+
RT (t)−RC(t)

2

RC(t−τ∗)p(t−τ∗)

(1−p(t−τ∗))−TRC(t−τ∗)−1
.

(12)

Therefore, during the period when PFC is triggered, the
accumulated packet loss L of the bottleneck switch is

L=

∫ T

0
max{0, N×RC(t)−C(1−ppfc(t))−B} dt. (13)

We simulate the cumulative packet loss for different
flow numbers N under different watermark parameters.
The simulation code is open source [54]. The simulation
topology is shown in Fig. 2, and the results are shown in
Fig. 6:

(1) The larger the number of flows or the larger the initial
rate, the slower the convergence and the more packet loss.

(2) Reducing the initial rate and initial target rate can
alleviate congestion. In particular, too high of these two rates
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(a) 4 flows, initial rate 40 Gbps, target rate 40 Gbps (K is Kpfc, T is Tpfc)
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(b) 8 flows, initial rate 40 Gbps, target rate 40 Gbps
Fig. 7. Simulation results of the Fluid model under different PFC parameters (Kmin = 5KB, Kmax = 200KB, Pmax = 10%)

must cause excessive deceleration.
(3) Appropriate ECN/PFC watermark parameters can

improve packet loss and convergence. Under the same PFC
parameters, higher ECN marking threshold and probability
performance is worse (i.e., the combination of ECN (5 KB,
200 KB, 10%) and PFC (800 KB, 838 us) always perform best).

The exception is that the low watermark (blue line) does
not achieve good convergence. We believe this is due to
the low marking probability and PFC threshold. Therefore,
we further verify the impact of different PFC trigger and
duration thresholds on throughput and queuing, and the re-
sults are shown in Fig. 7. Convergence performance, queue
length at congestion points, and packet loss are negatively
correlated with the PFC threshold and positively correlated
with the PFC duration. Correspondingly, the combination of
Kpfc=300KB and Tpfc=838us performs the worst.

5 DESIGN

In this section, we introduce the design goals, overall ar-
chitecture, optimization methods, and tuning algorithm of
ByteTuning, an automated watermark tuning system.

5.1 Design Goals
ByteTuning should have the following characteristics:

(1) Simplicity: The feedback control of ByteTuning
should be easy to deploy, especially the network status
measurement and watermark configuration delivery should
be lightweight.

(2) Efficiency: ByteTuning should avoid using a stateless
blind search algorithm to avoid invalid repeated searches,
due to the huge watermark configuration space. In addi-
tion, ByteTuning should have strong adaptability to reduce
control lag.

(3) Scalability: ByteTuning should adapt to servers,
topologies and traffic patterns in different situations, espe-
cially to adapt to different software and hardware switches.

5.2 Architecture
Based on the above design goals, as shown in Fig. 8, the
core modules of ByteTuning include network telemetry,
traffic generation engine and tuning engine. Among them,

Server

Spine Switch

Leaf Switch

Network Telemetry ByteTuning

DeliverMeasure

TCP/RDMA Traffic

Traffic Engine

Simulated 
Traffic

Applications

Business 
Traffic

AI Training 
& Inference

Object Storage &
Block Storage

Fig. 8. Key modules of ByteTuning

the network telemetry module collects network status on
demand, which is the input and feedback signal of Bytetun-
ing. The traffic generation engine constructs network traffic,
avoiding excessive reliance on typical real services such as
machine learning training and inference. The tuning module
executes the tuning algorithm and delivers the near-optimal
watermark configuration.

5.3 Tuning Algorithm
The essence of watermark tuning is a black-box optimiza-
tion, i.e., only the correspondence between input and output
is known, but its internal structure cannot be expressed in
a specific form. Therefore, the goal of tuning is to optimize
the black-box objective function within a limited evaluation
cost, and find a watermark configuration solution as quickly
as possible, under which the value of the black-box objective
function is close to the global optimum. For this problem,
common solving algorithms include traversal, grid search,
random search, Bayesian optimization, Monte Carlo tree
search, heuristic search, and reinforcement learning. Con-
sidering the solution efficiency and deployment difficulty,
ByteTuning adopts simulated annealing (SA) algorithm.

Since DCN usually focuses on real-time throughput
and latency, and considering the difficulty of collecting
network performance indicators, ByteTuning uses dynamic
throughput T and dynamic latency Q to evaluate network
performance, so the feedback parameters of ByteTuning are
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Fig. 9. Search steps for ByteTuning

the weight coefficient β of throughput and latency and the
fairness coefficient γ between flows [55]. The optimization
objectives f include maximizing throughput, minimizing
latency, and maximizing inter-flow fairness.

So for throughput- or delay-sensitive traffic, the wa-
termark tuning objective function is the weighted sum of
throughput and queues, that is

f=maximize
n∑

i=1

[β
Tnow(switchi)

Tmax(switchi)
+(1−β)Qmin(switchi)

Qnow(switchi)
], (14)

where Tnow and Qnow are the throughput and queue (la-
tency) of the current tuning round, and Tmax and Qmin are
the historical optimal values.

For fairness-sensitive traffic, the objective function is to
maximize the per-flow expectation and minimize its vari-
ance, that is

f=maximize{
∑n

i=1[β
Tnow(flowi)
Tmax(flowi)

+(1−β)Qmin(flowi)
Qnow(flowi)

]

γ
∑n

i=1[Tnow(flowi)− ¯Tnow(flowi)]2
}. (15)

As shown in Algo. 14, the optimization strategy of the

4. The function compute Energy()delivers watermark configuration
and collects network status, which returns the objective function value
according to the Eq. 14 and 15; The function perturb() returns the new
solution x′ generated by perturbation, as described in optimization
strategy (2).

Algorithm 1: Watermark Tuning Algorithm
Input: Initial watermark: x, Iterations: I , Initial

temperature: tem, Target temperature:
temgoal, Cooling coefficient: C , Search step: s.

Output: Near-optimal watermark: xbest, Optimal
objective function: f(xbest).

1 Function bytetuning()
2 f(x) = compute Energy(x);
3 xbest = x;
4 f(xbest) = f(x);
5 while tem > temgoal do
6 for i = 1 : I do
7 f(x) = compute Energy(x);
8 x′ = perturb(x);
9 f(x′) = compute Energy(x′);

10 if f(x′) - f(x) ≥ 0 then
11 x = x′ and f(x) = f(x′);
12 s = s/2;
13 if f(x′) - f(xbest) ≥ 0 then
14 xbest = x′ and f(xbest) = f(x′);
15 end
16 else
17 s = s× 2;

18 if e
f(x′)−f(x)

tem > rand() then
19 x = x′ and f(x) = f(x′);
20 end
21 end
22 end
23 tem = tem× C ;
24 end
25 end

tuning algorithm based on simulated annealing includes:
(1) ByteTuning becomes more conservative as the it-

eration increases, corresponding to the slow decrease in
temperature in SA.

(2) In order to take into account both the breadth and
depth of the search, ByteTuning adopts a step size adjust-
ment strategy of ”if a better watermark is found, the step size
will be halved; if a poorer watermark is found, the step size will be
doubled”. Among them, the purpose of halving the step size
is to enable ByteTuning to deepen the search in the better
solution area, so as to search for the near-optimal watermark
solution more efficiently. The doubling of the step size
enables ByteTuning to jump out of the poor solution area
as much as possible to avoid invalid search. The overall
process is shown in Fig. 9.

Among them, when the new solution is inferior to the
old solution, the tuning algorithm adopts the Metropolis
criterion to accept the new solution (see lines 18-20). The
number of iterations and the cooling process determine the
total search rounds. We recommend that the number of
iterations I be 10, initial temperature tem be 100, the target
temperature temgoal be 0.01, the cooling coefficient C be
0.99 and the search step s be 0.5. The algorithm has been
desensitized and open source [56].

5.4 Optimization Strategy
ByteTuning is optimized in the following three ways.
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Fig. 10. Measurement results of throughput, latency, and queue when 2-to-1 with different traffic patterns

(1) Optimizing for Telemetry: Modern data centers de-
ploy a variety of network measurement tools, most of which
are out-of-band, supporting the measurement of queue
throughput, packet forwarding rate, packet loss rate, buffer
utilization ECN/PFC statistics, switch hardware utilization,
etc. But their reporting interval is at least ms level (e.g., 30s
to 600s for SNMP, 100ms to 30s for out-of-band telemetry),
which is difficult to meet the requirements of ByteTuning.

Firstly, we recommend using queue lengths to evaluate
network latency. As shown in Fig. 10 (a-c), we observe
that network latency was positively correlated with switch
queue using out-of-band telemetry (ONT). For example, the
average no-load latency of the RDMA network in a Pod is
2.61 us, the light-load latency is 16.37 us, and the heavy-
load latency is 21.33 us. The corresponding real-time queue
lengths are 0, 3516, and 4667 Cells.

Additionally, we recommend using in-band network
telemetry (INT) [57] to obtain end-to-end fine-grained net-
work statistics (e.g., Broadcom Trident3, Tomahawk2 and
newer chips already support this feature). In order to reduce
the overhead, we directly obtain the network latency by
telemetering the queue, and indirectly infer the throughput
by the number of telemetry reports. As shown in Fig. 10 (a)
and (d), the throughput results obtained by INT and ONT
are almost the same.Throughput is related to the number of
telemetry reports per unit time, the average packet size, and
the telemetry sampling rate, that is,

Throughput =
NumTelemetryReports × S

SamplingRate
. (16)

Finally, considering the constraints of the processing
performance of switches and network telemetry servers,
ByteTuning processes the original network telemetry infor-
mation through data aggregation and feeds it to the tuning
module. Available aggregation operations include Min(),
Max(), Sum(), P99(), etc.

(2) Compress the Search Space: Assuming that the entire
network contains k switches, and each switch is enabled
with ECN and PFC, the size of the watermark tuning search
space is (ECNoption×PFCoption)

m, e.g., if each switch is
tuned separately in Sec.2.3, the search space is 33006. Since
the data center has a hierarchical symmetric topology and
top-down symmetric traffic, ByteTuning can simplify the
control overhead by picking out the switches through which
the traffic passes. Moreover, we recommend two strategies
to simplify this process, one is to only collect the state of the

switch at the receiving side and the other is to configure the
same watermark for all ports of the switch at the same layer.

(3) Translation for Configuration Language: ByteTuning
needs to shield the differences in watermark configura-
tion commands and chip features of software/hardware
switches. We design a configuration language translator for
more than 60 kinds of switches including Cisco, Arista,
Huawei, H3C and other commercial switches and whitebox
switches. It acts between the tuning module and the switch
to realize the differentiated distribution of watermark con-
figuration intentions.

6 RESULT

In this seciton, we verify the performance of ByteTuning and
various benchmark tuning schemes in various scenarios,
proving the superiority of ByteTuning.

6.1 Setup

We build two test clusters in the real data center. The
first cluster contains 40 servers, and they are intercon-
nected as shown in Fig. 2. The bandwidth of the ac-
cess/aggregation/core links is 25/100/200 Gbps. The sec-
ond cluster contains 3 Multi-host servers, which are re-
spectively connected to 3 ToR switches. The bandwidth
of the access/aggregation/core links is 100/200/400 Gbps.
The server is equipped with Intel Xeon Platinum 8260
CPU@2.40GHz 96 cores, 25 GE Single-host Mellanox CX-5
or 200 GE Multi-host Mellanox CX-6 RNIC, 376 GB DDR4
memory, Debian v9.13 (Linux Kernel v4.14) and MLX OFED
v5. 0.

We compare the performance of ByteTuning, ACC,
experience-based watermark, manufacturer-recommended
watermark and DCQCN-based watermark. Unless other-
wise specified, the network telemetry period is 1 s, and the
weight β=0.5. Tuning algorithm parameters are described
in Sec. 5.3. The tuning parameters for ECN/PFC are Kmin,
Kmax, Pmax, headroom, and α.

6.2 Scene I: Standard Test

On the first cluster, we verify the tuning performance of
ByteTuning when 2-to-1 and 39-to-1 RDMA Incast.

2-to-1: The number of QPs for each sender is 100, and
the message size is 1024 KB. The results are shown in Figure
1. Compared with ACC/experience-based/Manufacturer-
recommended/DCQCN-based, the average throughput of
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Fig. 11. The tuning result when 2-to-1

ByteTuning increased by 0.14%/0.57%/2.62%/5.81% (see
Fig. 11(a)), and the average queue length of switches de-
creased by 3.21%/ 79.12%/74.28%/39.56% (see Fig. 11(c)).
In particular, since the 30s, the switch queue of ByteTuning
has always been lower than 1000 Cells, and since the 80 s, it
has dropped to 0. ACC is always below 1000 Cell after 20 s,
except 60 s and 70 s.

In addition, as shown in Fig. 11(b) and 11(d), the cu-
mulative throughput regret is the accumulation of the dif-
ference between the actual throughput and the theoretical
maximum throughput, and the cumulative queue regret is
the sum of the cumulative queues. Both ByteTuning and
ACC are better than other solutions, indicating that they can
effectively optimize the network performance of RoCEv2,
and ByteTuning is slightly better than ACC.

39-to-1 RDMA Incast: The number of QPs for each
sender is 10 or 50, the burst interval is 1000 us, and
each burst is 10 KB or 64 KB. We evaluate P50 and
P99 FCT of different solution. As shown in Fig. 12, for
P50 FCT, ByteTuning performs best. For P99 FCT, Byte-
Tuning is only about 2.62% worse than ACC when QP
number = 50 and message size = 10 KB. Compared with
the experience-based watermark, ByteTuning optimizes
P50 FCT by 14.65%/8.11%/7.19%/9.19% and P99 FCT by
22.71%/6.52%/8.87%/8.20% on the four cases respectively.

6.3 Scene II: Redis Storage

As a high-speed in-memory key-value database sensitive
to throughput and latency, when the message size exceeds
400 KB, the performance benefit of Redis over RDMA [58]
is significantly better than that of Redis over TCP. We
verify the performance optimization of ByteTuning for the
communication between Redis Server and Proxy. The Redis
system is ByteDance be4redis, and the benchmark tool is

Redis-benchmark. Redis Client sends Set to Redis Server,
the message size is 64 KB, the number of clients is 20, and
the number of threads for each client is 10. The evaluation
metrics include IOPS, FCT, queues and number of ECN-
marked packets.

The results are shown in Tab. 5. The performance of
Redis over RDMA is better than Redis over DCTCP, with
a 43.7% increase in throughput and a 99.2% reduction in
switch queue. Compared with the other two watermark
solutions, the throughput of ByteTuning increased by 9.1%
and 5.4%, and the FCT decreased by 18.2% and 7.1% respec-
tively. In particular, the number of ECN-marked packets of
ByteTuning is close to that of DCTCP.

6.4 Scene III: Multi-host RNIC
On the second cluster, we evaluate the 2-to-1 performance
of ByteTuning and the ECN watermark parameters of the
Multi-host RNIC recommended by the manufacturer under
different DCQCN speed adjustment intervals, to verify the
adaptability of ByteTuning to the CC algorithm.

The result is shown in Fig. 13. (1) When Rate Reduce
Monitor Period=0/1 and Min Time Between CNPs=0, the
number of ECN-marked packets of ByteTuning reduces by
27.52% and 11.70%, while the throughput reduces by 0.8%
and 1.9%. The reason may be that the increase of DCQCN
speed adjustment sensitivity leads to the slowdown of con-
gestion. In other cases, the number of ECN-marked packets
of ByteTuning increases by 5.03%-44.59%. (2) In all cases,
the number of TX-PFC Pause of ByteTuning reduces by
4.3%-91.16%, and the TX-PFC Pause Duration reduces by
17.59%-97.79%. (3) When 3-to-1, where Host C is Multi-host
Server with two PFs, Host C 1 and Host C 2, and the two
DCQCN adjustment parameters take 4, the 1QP through-
put of ByteTuning increases by 1071.42% and 81.41% (see
Tab. 6), compared with no-VoQ and VoQ (manufacturer-
recommended watermark).

6.5 Scene IV: Telemetry Overhead
As shown in Tab. 7, we count the bandwidth overhead
generated by ByteTuning using different network teleme-
try tools on the first cluster. Among them, in-band net-
work telemetry (INT) achieves extremely high telemetry
frequency while having the smallest overhead, followed
by out-of-band network telemetry (ONT). According to the
optimization described in Sec. 5.4, we measure the telemetry
performance of the Broadcom TD3/TH3 chip to reach 200
KPPS. In addition, Broadcom TD4/TH4 already supports
per-packet in-band network telemetry, which is adopted by
ByteTuning with extremely low overhead.

7 DISCUSSION

In this section, we focus on discussing and comparing
ByteTuning with the existing state-of-the-art working ACC.
They are representatives of centralized watermark tuning
and distributed watermark tuning respectively. In general,
ACC and ByteTuning are the few works that optimize
RoCEv2 network performance via tuning. Some previous
works have slightly discussed watermark configuration (see
Sec. 3), but they don’t go deep.
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Fig. 12. The tuning result when 39-to-1 RDMA Incast

TABLE 5
The tuning result of Redis storage

Redis over DCTCP Redis over RDMA
(Experience-based)

Redis over RDMA
(Manufacturer-recommended)

Redis over RDMA
(ByteTuning)

Throughput (Gbps)/IOPS (K) 14.41 / 25.51 20.73 / 39.11 21.41 / 41.03 22.59 / 43.20

FCT (ms) 15.60 11.23 9.86 9.16

Queue (Cells) 1.16 M 8.23 K 4.81 K 2.53 K

ECN-marked packets 3.79 K 12.80 K 6.72 K 4.97 K
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Fig. 13. The tuning result on the Multi-host RNIC

TABLE 6
The tuning result of throughput and fairness on the Multi-host RNIC

No-VoQ VoQ (Mfr.-
recommended) ByteTuning

A→C 1, 500 QP 25.1 Gbps 25.2 Gbps 25.2 Gbps

B→C 1, 500 QP 24.8 Gbps 25.0 Gbps 25.0 Gbps

B→C 2, 1 QP 3.5 Gbps 22.6 Gbps 41.0 Gbps

It is an interesting solution to optimize the watermark
configuration of the RoCEv2 switch cluster through deep

TABLE 7
The overhead from different network telemetry tools of ByteTuning

SNMP sFlow ONT INT

Bandwidth 11.2
Mbps

16.6
Mbps

13.78
Mbps

10.2
Mbps

Frequency 0.03
1/16384

(Sampling ratio) 1 1000

reinforcement learning, but we find a important problem
when deploying ACC. To sum it up, it is very easy to disrupt
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the rhythm of watermark tuning by trying to reduce the
communication overhead between switches. Due to the lack
of synchronous tuning beats such as centralized ones, there
is a lack of interaction between ACC switches, resulting in
fast tuning but slow convergence. In other words, the newly
configured watermark of switch #1 will affect the through-
put and queue of switch #2 connected in series, causing
switch #2 to mistakenly think that its own watermark is
inappropriate, although it may be the near-optimal water-
mark. Therefore, the core difference between distributed
and centralized is the trade-off of communication overhead
(whether synchronization between switches is required). At
this stage, RoCEv2 network telemetry has become common,
and ByteTuning should be the most appropriate engineering
practice.

In fact, any centralized system should consider its scala-
bility. Key performance bottlenecks for ByteTuning include
the Telemetry/ Measurement Server and ByteTuning Server.
For the former, the industry usually uses distributed tech-
nology to build, which has strong scalability; for the latter,
the number of tuning tasks is matched with the computing
tasks, and the tuning overhead is very small, so the scalabil-
ity is also very strong.

TABLE 8
Comparison of distributed and centralized watermark tuning

Distributed Centralized

Solution ACC ByteTuning

Algorithm Deep reinforcement
learning

Simulated
annealing

Tuning
object ECN ECN&PFC

Min tuning
interval 1 RTT 1 RTT

Deployability

For incremental
switches, retrofitting
the existing switch
to have sufficient
computing power.

For incremental and
existing switches,
avoiding to retrofit
switch and reducing
deployment costs.

Pros&Cons

(1) Fast tuning and
low overhead,
(2) Inter-switch inter-
ference and slow
convergence,
(3) High computation
overhead.

(1) Introducing in-
band telemetry to
reduce feedback
overhead,
(2)High tuning
latency and cost.

8 CONCLUSION AND FUTURE WORK

In this paper, we illustrate the necessity of RoCEv2 wa-
termark tuning including but not limited to case analysis
and model simulation, and introduce the detailed design
of the centralized tuning system ByteTuning. Experiment
results show that it is sufficiently comprehensive, efficient
and reliable. In the future, we will combine the advantages
of existing solutions and try to apply collaborative multi-
objective multi-agent reinforcement learning to the ByteTun-
ing algorithm to solve the trade-off problem of distributed
and centralized concerns. In addition, a direction worthy of

follow-up is to further improve the flexibility and adapt-
ability of ByteTuning, and improve network performance
for more complex RDMA applications.
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