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Abstract—Evolutionary algorithms (EAs) are among the
most effective approaches for solving multi-objective opti-
mization problems (MOPs), yet their performance heavily
depends on the choice of variation operators, which often
lack adaptability across different problem scenarios and
evolutionary stages. To overcome this limitation, we pro-
pose a novel cooperative operator selection framework that
integrates a deep Q-network (DQN) and a large language
model (LLM) as dual decision-makers. The DQN leverages
online learning to adaptively select operators based on state-
feedback, while the LLM contributes high-level reasoning
and prior knowledge. Through a customized collaboration
strategy, the two models dynamically predict the most suit-
able crossover or mutation operator at each generation. To
evaluate the proposed approach, we construct a constrained
multi-objective optimization model for edge-cloud collabo-
rative task offloading, which aims to jointly minimize task
delay and energy consumption under resource and feasibility
constraints. Experimental results on both this real-world
application and standard benchmark problems demonstrate
that the proposed algorithm achieves superior convergence
and diversity performance compared to existing methods,
highlighting its robustness and generalization capability.

Index Terms—Multi-objective optimization, evolutionary al-
gorithms, deep reinforcement learning, large language models,
operator selection, cooperative decision-making, constrained
multi-objective optimization

I. INTRODUCTION

Many real-world problems involve multiple conflicting
objectives, making it challenging to find a single solution
that satisfies all requirements. These problems, known
as multi-objective optimization problems (MOPs) [1], are
effectively tackled by multi-objective evolutionary algo-
rithms (MOEAs). MOEAs are population-based methods

that do not rely on gradient information and are known
for their adaptability and convergence capabilities [2].

To improve search efficiency and solution quality, nu-
merous crossover and mutation operators have been de-
veloped [3]. For instance, GAs maintain diversity [4], DE
exploits vector differences [5], and PSO uses local and
global guidance [6]. However, the performance of indi-
vidual operators often degrades when applied to different
problem types or dynamic environments [7].

To address this, adaptive operator selection strategies
based on machine learning (ML) have been proposed [8].
These approaches can be broadly classified into offline
recommendation and online selection. While promising,
they face challenges such as limited prediction accuracy
and difficulty in strategy reasoning, particularly in high-
dimensional or dynamic contexts [9].

Recently, deep reinforcement learning (DRL) and large
language models (LLMs) have shown strong capabilities
in decision-making tasks. DRL, especially a deep Q-
network (DQN), learns operator utility through feedback
[7], while LLMs excel in reasoning and have been applied
in planning, code generation, and heuristic design [10]–
[12].

Motivated by this, we propose a collaborative frame-
work where DQN and LLM jointly guide operator se-
lection. Unlike prior methods, the LLM is not used as a
direct variation operator but provides high-level reasoning
based on prompt-engineered population state inputs. A
coordination mechanism enables the two models to dy-
namically select suitable traditional operators, enhancing
the adaptability and intelligence of the search process.

The main contributions of this paper are as follows:



First, we propose a dual-model framework that inte-
grates DQN with LLM for collaborative decision-making
in operator selection, significantly enhancing the adapt-
ability and intelligence of multi-objective evolutionary
algorithms. This framework employs a prompt-engineering
mechanism that enables the LLM to comprehensively
understand population states and provide high-quality,
reasoning-based decision suggestions for algorithm opti-
mization.

Second, comprehensive experimental validation is con-
ducted on both standard benchmark functions and real-
world engineering problems including DelayEnergy op-
timization. The results demonstrate that our proposed
method achieves superior performance in terms of con-
vergence behavior, solution quality, and generalization
capability, validating the effectiveness and practicality of
the framework in solving complex multi-objective opti-
mization problems.

II. PROPOSED METHODS

A. Collaborative Operator Selection via LLM and DQN

Algorithm 1 DQN-Based Operator Selection with Learn-
able GPT Invocation

1: Input: p (current solution), w (corresponding weight
vector),

2: OP (candidate operator set), Q (DQN with
GPT-action), LLM (large language model)

3: Output: op (selected operator)
4: state← {p,w}
5: action ← DQN.ChooseAction(state) // GPT is in-

cluded as an extra learnable action in DQN
6: if action == |OP |+ 1 then
7: features← ExtractPopulationFeatures()
8: prompt← EncodePrompt(features)
9: LLM score← zero vector of size 1× |OP |

10: for each opi ∈ OP do
11: LLM score[opi]← LLM(prompt, opi)
12: end for
13: op← SelectOperatorViaRoulette(LLM score)
14: else
15: op ← OP [action] //DQN directly selects an

operator
16: end if
17: return op

To address the dynamic nature of multi-objective opti-
mization, we propose a dual-model framework that com-
bines DQN and LLMs for operator selection. Unlike prior
work using LLMs as variation operators, our method lever-
ages LLMs for high-level reasoning to guide traditional
operator selection.

As shown in Algorithm 1, the DQN chooses either
a traditional operator or a special “invoke LLM” action
based on the current solution p and its weight w. When

the LLM is invoked, population features are encoded into
a prompt, and the LLM outputs preference scores for
all candidate operators. Roulette selection based on these
scores determines the final operator. This enables the DQN
to learn when to rely on LLM guidance, replacing static
rule-based strategies.

The DQN uses a Q-network with target network and
replay buffer, where each transition tuple (s, a, r, s′) in-
cludes the decision variables, weight vector, and LLM-
inferred scores:

s = (p1, . . . , pD, w1, . . . , wM , l1, . . . , lK) (1)

The Tchebycheff function measures objective aggregation:

gtch(x,w, z∗) = max
i
{wi(fi(x)− z∗i )} (2)

and normalized fitness improvement (NFI) is:

NFIx = max

{
1− gtch(x,w, z∗)

gtch(y, w, z∗)
, 0

}
(3)

The reward for each operator is the maximum NFI ob-
served:

rewardop = max
(op,NFIx)∈R

{NFIx} (4)

A fully connected network approximates Q(s, a) with
layer sizes 128–256–128–64–32. The loss is:

L =
1

|T |
∑
t∈T

(
Q(st, at)−

[
rt + γmax

a′
Q(st+1, a

′)
])2

(5)
To maintain diversity, unselected operators are peri-

odically forced to be explored. When LLM is invoked,
selection is based on LLM-derived scores, supporting
a balance between DQN exploitation and LLM-guided
semantic reasoning.

This mechanism is integrated into MOEA/D, where
DQN adaptively decides when to use LLM assistance. It
enables context-aware, dynamic operator selection, leading
to enhanced performance and generalization across various
MOP scenarios.

B. Large Language Models for Operator Selection

In the proposed framework, LLMs act as decision-
making assistants that recommend operators based on the
current optimization state. Unlike conventional numeric
strategies, LLMs interpret structured natural language
prompts containing semantic and statistical context to
guide selection.

At each generation, a Top-K set of candidate operators
is shortlisted by the DQN. The LLM then selects one
operator from this set based on a dynamically constructed
prompt, which includes:

• Problem name and current optimization progress;
• Generation number and summary statistics;
• For each candidate: name, usage count, and recent

performance score.



TABLE I
A COMPARISON OF RESULTS ON ZDT AND DTLZ INSTANCES IN TERMS OF HV.

Problem m d MOEA/D MOEA/D-DE MOEA/D-DQN MOEA/D-LO MOEA/D-LPOS

ZDT1 2 30 7.1830e-1 (6.34e-4) - 7.1691e-1 (1.48e-3) - 7.2020e-1 (7.58e-5) - 7.1938e-1 (1.02e-3) - 7.2026e-1 (2.92e-5)
ZDT2 2 30 4.4009e-1 (2.51e-3) - 4.4269e-1 (1.10e-3) - 4.4484e-1 (7.31e-5) - 4.4388e-1 (2.24e-4) - 4.4495e-1 (5.59e-5)
ZDT3 2 30 6.0833e-1 (2.81e-2) + 5.9809e-1 (6.25e-4) = 5.9797e-1 (2.52e-5) = 5.9772e-1 (9.16e-4) - 5.9796e-1 (1.58e-5)
ZDT4 2 30 1.9334e-1 (1.44e-1) - 0.0000e+0 (0.00e+0) - 3.0155e-1 (1.59e-1) - 4.0585e-1 (3.08e-1) = 5.4891e-1 (7.93e-2)
ZDT6 2 30 3.4046e-1 (4.87e-3) - 3.7024e-1 (3.03e-2) = 3.8890e-1 (2.11e-5) = 3.8778e-1 (4.06e-4) - 3.8891e-1 (3.98e-7)
DTLZ1 3 7 8.4092e-1 (1.85e-3) = 7.6802e-1 (1.06e-1) - 8.3882e-1 (3.57e-3) - 6.8954e-1 (1.01e-1) - 8.4192e-1 (2.45e-3)
DTLZ2 3 12 5.6276e-1 (6.37e-5) + 5.3254e-1 (1.89e-3) - 5.5915e-1 (7.49e-4) - 5.3547e-1 (1.37e-3) - 5.6230e-1 (1.77e-4)
DTLZ3 3 12 2.6311e-1 (2.41e-1) - 1.8798e-1 (2.31e-1) - 3.6599e-1 (2.59e-1) = 0.0000e+0 (0.00e+0) - 4.0871e-1 (2.33e-1)
DTLZ4 3 12 4.3804e-1 (1.57e-1) - 5.0660e-1 (3.10e-2) - 5.6047e-1 (1.11e-3) - 5.3547e-1 (2.21e-3) - 5.6239e-1 (3.28e-4)
DTLZ5 3 12 1.8337e-1 (2.35e-5) - 1.9555e-1 (8.71e-5) + 1.9264e-1 (4.27e-5) - 1.9473e-1 (1.64e-4) + 1.9268e-1 (1.65e-5)
DTLZ6 3 12 1.8332e-1 (3.19e-5) - 1.9593e-1 (1.90e-5) + 1.9268e-1 (1.64e-5) - 1.9587e-1 (4.38e-5) + 1.9269e-1 (1.11e-5)
DTLZ7 3 22 2.5749e-1 (1.21e-3) - 2.1205e-1 (1.59e-2) - 2.6532e-1 (6.78e-4) - 2.3509e-1 (7.02e-4) - 2.6576e-1 (3.11e-4)
DelayEnergyEC 2 3 9.3099e-2 (3.13e-3) - 9.9112e-2 (1.55e-5) - 9.9124e-2 (1.14e-5) - 9.8581e-2 (5.95e-4) - 9.9450e-2 (3.36e-4)

+/-/= 2/10/1 2/9/2 0/10/3 2/10/1

TABLE II
A COMPARISON OF RESULTS ON ZDT AND DTLZ INSTANCES IN TERMS OF IGD.

Problem m d MOEA/D MOEA/D-DE MOEA/D-DQN MOEA/D-LO MOEA/D-LPOS

ZDT1 2 30 4.6834e-3 (4.50e-4) - 5.1703e-3 (7.41e-4) - 3.8954e-3 (1.00e-5) - 4.3424e-3 (8.09e-4) - 3.8891e-3 (2.96e-6)
ZDT2 2 30 5.9820e-3 (1.37e-3) - 4.2948e-3 (3.31e-4) - 3.8240e-3 (7.45e-6) - 4.1085e-3 (7.62e-5) - 3.8137e-3 (5.33e-6)
ZDT3 2 30 1.6180e-2 (9.26e-3) - 1.0818e-2 (9.06e-5) + 1.0936e-2 (1.56e-5) = 1.1551e-2 (3.29e-4) - 1.0944e-2 (2.12e-5)
ZDT4 2 30 5.1144e-1 (1.79e-1) - 7.2974e+0 (3.13e+0) - 3.8773e-1 (1.70e-1) - 3.6383e-1 (4.53e-1) = 1.3340e-1 (6.36e-2)
ZDT6 2 30 3.7288e-2 (4.21e-3) - 1.7454e-2 (2.39e-2) = 3.1053e-3 (1.75e-6) = 3.7582e-3 (2.44e-4) - 3.1043e-3 (4.58e-7)
DTLZ1 3 7 1.9376e-2 (3.23e-4) = 3.9110e-2 (3.26e-2) - 2.0134e-2 (1.08e-3) = 7.3215e-2 (4.03e-2) - 1.9509e-2 (6.18e-4)
DTLZ2 3 12 5.0308e-2 (2.57e-6) + 6.9635e-2 (6.90e-4) - 5.1880e-2 (3.43e-4) = 7.0677e-2 (1.38e-3) - 5.2028e-2 (4.71e-4)
DTLZ3 3 12 1.2379e+0 (1.64e+0) - 8.2970e+0 (1.25e+1) - 5.0265e-1 (6.90e-1) = 1.1472e+1 (4.61e+0) - 3.3712e-1 (5.03e-1)
DTLZ4 3 12 3.0054e-1 (3.19e-1) = 1.7150e-1 (9.29e-2) - 5.8194e-2 (2.55e-3) - 1.0054e-1 (9.16e-3) - 5.5750e-2 (8.02e-4)
DTLZ5 3 12 3.1165e-2 (6.34e-5) - 1.2154e-2 (7.91e-5) + 1.8467e-2 (8.73e-5) + 1.2605e-2 (3.32e-4) + 1.8540e-2 (4.28e-5)
DTLZ6 3 12 3.1220e-2 (1.08e-4) - 1.2314e-2 (3.16e-5) + 1.8574e-2 (4.87e-5) = 1.2314e-2 (1.35e-4) + 1.8552e-2 (3.42e-5)
DTLZ7 3 22 1.3772e-1 (2.77e-3) - 2.4145e-1 (1.06e-1) - 1.3108e-1 (1.24e-3) = 2.0660e-1 (2.42e-3) - 1.3061e-1 (1.23e-3)
DelayEnergyEC 2 3 1.5699e+0 (7.09e-1) - 4.0218e-1 (3.62e-4) = 4.0202e-1 (5.22e-4) = 4.3721e-1 (1.24e-1) - 4.0190e-1 (3.78e-4)

+/-/= 1/10/2 3/8/2 1/4/8 2/10/1

Fig. 1. Approximated PFs on ZDT4 instance

Fig. 2. Approximated PFs on DelayEnergyEC instance



A sample prompt format is shown below:

Example Prompt:
Now, you are assisting in selecting the most
effective variation operator in a multi-objective
optimization process.
The current optimization problem is DTLZ2. The
algorithm is at generation 37, with an overall
progress of 45.3%.
You are given three candidate operators with usage
and performance:
1 = SBX (used: 18, performance: 0.47)
2 = M2M (used: 12, performance: 0.51)
3 = DE1 (used: 9, performance: 0.44)
Based on this information, select the most promis-
ing operator.
Reply ONLY with the number (1, 2, or 3).

This prompt is sent to GPT-3.5-turbo via API, and
the returned index is accepted if valid. Otherwise, the
top-ranked candidate is chosen as fallback. The LLM’s
choice reflects learned knowledge of statistical patterns
and language semantics, enabling it to consider perfor-
mance, usage balance, and symbolic relevance.

By incorporating LLM-based reasoning, the framework
introduces a flexible and interpretable semantic layer
into operator selection, improving adaptability in dynamic
search environments.

C. Adaptive Operator Selection via LLM-DQN Collabo-
ration

To enable intelligent operator selection in multi-
objective optimization, we propose MOEA/D-LPOS, a
framework that integrates DQN and LLMs for context-
aware decision making .

At each generation, a decision state st is encoded using
individual and population-level descriptors: the current
solution xi, weight vector λi, objective vector fi, ideal
point z∗, diversity metrics, and operator usage history. The
DQN outputs a binary gate dt ∈ {0, 1} indicating whether
to consult the LLM.

If dt = 1, a structured prompt is generated to summarize
the current context, and the LLM returns a preference
distribution pLLM over candidate operators. The DQN
also provides a softmax-normalized distribution pDQN .
These are fused using a dynamic weighting coefficient:

pDQN (a) =
exp(Q(s, a)/τ)∑
a′ exp(Q(s, a′)/τ)

(6)

pfinal = β · pLLM + (1− β) · pDQN (7)
β = σ(confLLM · certDQN ) (8)

where σ(·) is the sigmoid function, confLLM is the
LLM’s top confidence score, and certDQN reflects Q-value
certainty.

If dt = 0, operator selection defaults to ϵ-greedy based
on Q-values. The selected operator generates an offspring,
and a scalar reward is computed as:

rt = α ·∆HVt + (1− α) · 1

1 + comp costt
(9)

Both the experience tuple ⟨st, at, rt, st+1, dt⟩ and LLM
interactions are stored to update the DQN and refine
future prompts. The full framework is summarized in
Algorithm 2.

Algorithm 2 MOEA/D-LPOS Framework
1: Input: Candidate operators OP , LLM model GPT
2: Initialize population P , weights W , DQN Q, buffer
T , pool E

3: while termination not met do
4: for each subproblem do
5: Encode state st
6: dt ← DQN decision
7: if dt = 1 then
8: Query LLM → pLLM , compute pDQN ,

fuse to select operator
9: else

10: Select operator via ϵ-greedy
11: end if
12: Generate offspring, compute reward rt
13: Store ⟨st, at, rt, st+1, dt⟩ and LLM data
14: end for
15: Periodically update DQN and refine prompts
16: end while

III. EXPERIMENTS

A. DelayEnergyEC: Constrained Multi-objective Opti-
mization Problem

We formulate the edge-cloud collaborative task offload-
ing as a constrained multi-objective optimization problem
termed DelayEnergyEC, which jointly minimizes task
delay and energy consumption. Consider a user task of
size D (MB) that can be executed locally, offloaded to
MEC server i, or offloaded to remote cloud. The decision
variables are task portions xi, xc (MB) and connection
time T (s), subject to constraint xi + xc ≤ D.

Objective Functions: The delay objective is defined as:

f1(x) = max

(
D − xi − xc

Vl
,

xi

Vu→i
+

xi

Vi
,

xc

Vu→c
+

xc

Vc

)
(10)

where D is the total task size in MB, xi and xc represent
the task portions offloaded to MEC server and cloud
respectively, Vl denotes the local processing speed, Vu→i

and Vu→c are the upload speeds to MEC server and cloud,
and Vi and Vc are the processing speeds of MEC server
and cloud respectively.



The energy consumption objective is:

f2(x) = (D−xi−xc)·Pl+(xi+xc)·Pt+Tmec·Pi+Tcloud·Pc

(11)
where Pl is the local processing power consumption, Pt

represents the transmission power for uploading tasks,
Tmec and Tcloud are the connection times to MEC server
and cloud respectively, and Pi and Pc denote the power
consumption during MEC and cloud connections.

Optimization Model:

min
xi,xc,T

F (x) = (f1(x), f2(x))

s.t. xi + xc ≤ D

f1(x) ≤ Td, f2(x) ≤ Eth

0 ≤ xi, xc ≤ D

0.01 ≤ T ≤ Tmax

(12)

where Td represents the maximum tolerable delay thresh-
old, Eth is the energy consumption threshold, and Tmax

denotes the maximum allowable connection time. The
constraints ensure that the total offloaded task portions do
not exceed the original task size, the delay and energy con-
sumption remain within acceptable limits, and all decision
variables stay within their feasible ranges.

To verify the performance of the proposed MOEA/D-
LPOS, comparisons were made with the most classical and
similar algorithms in the experiments by PlatEMO [13], in-
cluding MOEA/D [1], which is the most classical MOEA,
MOEA/D-DE [5], a variant of MOEA/D, MOEA/D-LO
[14], an algorithm that mimics the behavior of LLM, and
MOEA/D-DQN [7], an algorithm that uses reinforcement
learning to select operators alone. Experimental tests were
conducted on ZDTs [15], DTLZs [16], and DelayEner-
gyEC. The framework of the proposed method integrates
the advantages of LLM and optimization strategies, per-
forming better than previously proposed methods that use
LLM or reinforcement learning alone.

B. Parameter Settings

The settings for MOEA/D-based algorithms are as
follows: The number of subproblems N : 100 for ZDT
problems (M = 2) and 105 for DTLZ problems (M = 3).
The number of weight vectors in the neighborhood T :
N/10. The maximum number of evaluations differs across
test suites: 50,000 for ZDT problems, 30,000 for DTLZ
problems, and 10,000 for DelayEnergyEC problem, The
data size of the DelayEnergyEC problem is 100 MB.

C. Comparison

The experimental results confirm the effectiveness of the
proposed MOEA/D-LPOS across both benchmark prob-
lems (ZDT, DTLZ) and the real-world DelayEnergyEC
task. Table I presents the HV comparison results, where
MOEA/D-LPOS achieves the best performance on 9 out
of 13 test cases, demonstrating superior convergence ac-
curacy and diversity maintenance with higher HV values

indicating better solution quality. Table II shows the IGD
results, where MOEA/D-LPOS obtains the lowest IGD
values on 8 out of 13 instances, confirming excellent
convergence to the true Pareto front. Compared with
variants that utilize LLM (MOEA/D-LO) or reinforce-
ment learning (MOEA/D-DQN) alone, MOEA/D-LPOS
exhibits more stable and robust performance, significantly
outperforming competitors on the majority of test cases
as indicated by the statistical significance tests. Figure
1 illustrates the approximated Pareto fronts on the chal-
lenging ZDT4 instance, where MOEA/D-LPOS produces
a more complete and well-distributed front compared to
other algorithms. Figure 2 demonstrates the practical appli-
cability on the real-world DelayEnergyEC problem, show-
ing that MOEA/D-LPOS successfully identifies superior
trade-off solutions between delay and energy consumption
objectives. These results highlight the practical potential
of MOEA/D-LPOS in solving complex multi-objective
optimization problems effectively.

IV. CONCLUSIONS

In this work, we proposed MOEAD-LPOS, a dual-
model evolutionary framework that integrates DQN and
LLMs to enhance operator selection in constrained multi-
objective optimization. Unlike existing approaches that
treat LLMs as direct variation operators, our method
utilizes LLMs as high-level decision consultants, provid-
ing semantic guidance that complements the feedback-
driven learning capability of DQN. This collaborative
design enables dynamic and context-aware operator se-
lection, effectively improving the balance between global
exploration and local exploitation.Extensive experiments
conducted on classical benchmark problems and a real-
world edge-cloud task offloading scenario demonstrate that
MOEAD-LPOS achieves superior convergence, diversity,
and constraint-handling performance compared to state-
of-the-art methods. These results confirm the robustness
and generalization ability of our approach across diverse
problem domains.
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