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Abstract—The Industrial Internet of Things (IToT) enables
communication among automation systems, machinery, and sen-
sors in an industrial setting. To optimize critical industrial opera-
tions, a substantial volume of data concerning diverse in-factory
activities and automation services is generated by IoT devices
and sensors. This data is subsequently transferred to distant pro-
cessing systems for analysis and decision-making. Nevertheless, a
substantial latency in data transmission or any abnormality in the
generated data may result in delayed or erroneous decisions, con-
sequently impacting the efficacy of essential industrial systems.
To address these challenges, we established an intelligent network
architecture utilizing software-defined networking that achieves
tactile latencies efficiently while handling industrial data traffic
in an energy-efficient manner. To address the initial challenge, the
suggested architecture utilizes the Self-Organized Maps approach
to distinguish between industrial traffic requiring tactile latencies
and non-tactile traffic. We utilize a binary tree-based flow table
mapping method to enhance flow table matching and decrease
lookup times. To address the second challenge, we employ the
Support Vector Machine technique to identify anomalies in real-
time industrial data traffic. The Hadoop system and Mininet
emulator are utilized to evaluate the proposed architecture using
the UNSW dataset. The results demonstrate the effectiveness
of the suggested solution in providing energy-efficient tactile
assurances and identifying anomalies in traffic.

Index Terms—Industrial IoT, Internet of Things, Smart City,
Tactile Network, Traffic Anomalies.

I. INTRODUCTION

The Internet of Things (IoT) has significantly grown and
transformed the global infrastructure landscape. Recently, the

L. Tan and W. Zhang are with the Key Laboratory of Computing Power Net-
work and Information Security, Ministry of Education, Shandong Computer
Science Center (National Supercomputer Center in Jinan), Qilu University
of Technology (Shandong Academy of Sciences), Ji'nan 250014, China.
L. Tan is also with Department of Computer Science and Engineering,
Pohang University of Science and Technology, Pohang, 37673, Korea. Email:
tanlzh@sdas.org and wzhang @sdas.org

A. Singh is with Department of Computer and Information Sciences,
Northumbria University, UK. Email: amritpal2.singh@northumbria.ac.uk

H. Pei is with the School of Engineering Science, University of
Chinese Academy of Sciences, Beijing, 100049, China. Email: pei-
hongjuan@ucas.ac.cn

P. Zhang is with the Qingdao Institute of Software, College of Com-
puter Science and Technology, China University of Petroleum (East China),
Qingdao 266580, China and also with the Key Laboratory of Computing
Power Network and Information Security, Ministry of Education, Shandong
Computer Science Center (National Supercomputer Center in Jinan), Qilu
University of Technology (Shandong Academy of Sciences), Jinan 250014,
China Email: zhangpeiying@upc.edu.cn

P. K. Chahal is with the CEC, Chandigarh Group of Colleges, Mohali,
Punjab, India. Email: prabh0480@ gmail.com

M. Singh is with the Electrical and Computer Engineering Department,
Southern Methodist University, Dallas, USA. Email: maninderpals @smu.edu

Corresponding Authors: Hongjuan Pei and Peiying Zhang

IoT has experienced a substantial transformation and challenge
due to the emergence of various disruptive concepts and
technologies. Within this framework, Industrial IoT (IIoT) has
arisen as a pivotal facilitator in the establishment of automated
industries and smart factories, driven by recent advancements
such as Artificial Intelligence (AI). The IIoT comprises a
network of interconnected devices and sensors utilized within
an industrial setting. The major objective of these devices is
to incessantly collect, disseminate, and assess critical data [1]].
Integrated sensors in industrial machinery collect diverse data,
including important and sensitive information, which might
impact decision-making for various intelligent applications [2].
Figure |l] illustrates a standard IIoT setup in which sensors
gather data and relay it to a distant processing system. A
cloud-based big data processing cluster is used to analyse
data for essential objectives in industrial systems and product
quality monitoring applications. This data must be transmitted
swiftly and reliably to processing systems [3[]. Nonetheless, it
necessitates the swift and reliable dissemination of collected
data and the prompt and precise processing of the substantial
data produced by industrial sensors [4].
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Fig. 1: A Typical Scenario for IloT Applications

This scenario encounters two primary problems: a) trans-

mission delay and b) abnormalities in data traffic. These two
issues undermine any proposed solution in industrial networks.
The challenge with the former is that the generated data must
be delivered seamlessly and securely to the essential decision-
making system. Similarly, the latter issue deals with data
abnormalities, which might result in poor quality decisions.

To address the issue of data transfer latency, it is essential
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to identify an appropriate underlying network technology
that guarantees ultra-low latency, while also ensuring high
availability, and reliability for the transmission of data acquired
by industrial sensors [3]]. The International Telecommunication
Union (ITU) designated the name Tactile Internet (TI) to
describe an innovative Internet network capable of delivering
ultra-low latency while ensuring high availability and reliabil-
ity [[6]. Nonetheless, not all created data require tactile assur-
ances and can be managed on a best-effort basis. It is essential
to comprehend the data features and ascertain their Quality
of Service (QoS) needs for dynamic management [7]]. This
can enhance the utilization of network resources that would
otherwise be maximally employed to ensure tactile assur-
ances for incoming data packets. Software-defined Networking
(SDN) appears to be ideally suited for managing industrial
data gathered via sensors, providing tactile assurances while
enabling network operators to optimize resource utilization
through dynamically configurable methods implemented at the
control layer [8[|-[[10]. This work proposes the creation of
a TI-driven Software-defined industrial data-sharing system
that employs an Al-based approach to dynamically classify
incoming data traffic according to its QoS needs (tactile or
non-tactile). Subsequently, the flow tables on the forwarding
devices are optimized by reorganizing them with a binary
tree data structure to align appropriate flow entries with the
incoming differentiated data traffic.

Assuming that the industrial data traffic exhibit anomalous
behavior (due to any attack or faulty sensor), it will adversely
affect data quality; the acquired data may be erroneous,
inaccurate, or incomplete, rendering it unsuitable for confident
decision-making [11]]. Thus, monitoring and assessing the
essential parameters of the generated data becomes crucial.
Thus, we need to have a near real-time system that enables
the rapid identification of abnormalities or variations from
standard operations that may signify safety concerns [12]],
[13]. If traffic irregularities are recognized swiftly, it becomes
feasible to adjust the proposed solution to enhance accuracy
and performance [[14].

Numerous researchers have suggested methods to address
the aforementioned challenges [15], [[16]. Nevertheless, the
majority of these solutions are energy-intensive and do not
satisfy the criteria of the UN Sustainable Development Goals
2030 regarding Net Zercﬂ Energy considerations in network
data transmission and anomaly detection are essential for
maximizing operational efficiency and cost-effectiveness. The
development of the energy-aware data transmission methods
significantly increased energy utilisation. Moreover, legisla-
tive frameworks pertinent to energy management, such as
the European Union’s Ecodesign Directive”, impose stringent
energy efficiency standards, compelling network operators to
use more sustainable methods. Effective energy management
strategies and standards facilitate scalability, enabling the
growth of network infrastructure without a corresponding rise
in energy usage. Consequently, incorporating energy efficiency
into network data processing is essential. This is a crucial

Uhttps://sdgs.un.org/2030agenda
Zhttps://commission.europa.eu/energy-climate-change-environment

method for cost reduction, environmental effect mitigation,
and adherence to changing requirements.
So, the following contributions are provided in this paper:

o We design an energy-efficient data-sharing mechanism to
ensure tactile guarantees while simultaneously optimizing
network resource usage.

o We design an SVM-based approach to identify anomalous
traffic in the underlying networks while transmitting
enormous amounts of IIoT data.

II. SYSTEM MODEL

The proposed system model, as shown in Fig. 2] is subdi-
vided into three layers that are discussed below.

Trained SVM

Cloud/application Layer

SDN/Edge Layer

Input Layer

NT: Non Tactile, T: Tactile

Fig. 2: System Model

A. Input Layer

This layer comprises different IoT devices and sensors
deployed within industry setup for provisioning various mon-
itoring and control services.

B. SDN/Edge Layer

The network topologies are dynamic; hence, SDN deals
with these challenges while sending data, adapting to changing
topology effectively and optimizing QoS to ensure timely
and reliable delivery of data packets. The SDN layer also
acts as an edge layer to execute computational operations.
The control plane of SDN includes the network components
responsible for carrying data across the network; this includes
SDN switches and routers. When an SDN switch receives
a packet for forwarding, it checks whether an existing flow
rule is available. A request is generated and sent to the SDN
controller for a new flow rule in the non-availability of a flow
rule. However, flow rules differ for different QoS requirements
of incoming packets; the proposed model uses SOM-based
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classifiers deployed on SDN switches. These classifiers seg-
regate incoming packets into two different queues based on
the QoS requirements of the packet. Deployed rule checks for
the QoS delay requirements to be either less than 1 ms or
greater; packets with a QoS requirement of less than 1 ms are
sent to a queue of tactile packets and others to a non-tactile
packets queue. Accordingly, the different flow rules for tactile
and non-tactile packets are fetched from the SDN controller
into the SDN switch’s flow table for forwarding data packets.
If, in a case, no flow rule is matched, then a request is sent
to the controller. On receiving a request for a new flow rule,
the SDN controller creates new flow rules based on the pre-
installed protocols.

C. Cloud/Application Layer

The cloud/application layer is the central data processing
and analysis hub where all AI models are trained. IIoT data
is processed using SVM over a MapReduce-based big data
processing cluster for efficient feature extraction and decision-
making.

III. DATA DISSEMINATION APPROACH FOR TACTILE
APPLICATIONS

The energy consumption is one of the most important
factors affecting operational efficiency and sustainability in
tactile applications of IIoT. Classifying IIoT applications based
on tactile and non-tactile interactions offers a tactical structure
for maximizing resource distribution, especially concerning
energy usage. The operational needs of tactile applications
necessitate more significant energy inputs due to their re-
quirement for real-time engagement and prompt response in
operating machines and processes.

The proposed energy-efficient data dissemination mecha-
nism uses the Self-organized Map (SOM) to differentiate the
IToT-based applications and classify them into tactile and non-
tactile categories. In the proposed scheme, the binary tree data
structure is also integrated to divide the flow tables installed
on the forwarding devices to include flow entries relevant to
the tactile and non-tactile traffic. Finally, a mapping scheme
tries to organise the incoming traffic into an appropriate sub-
flow table for matching and action. The proposed scheme is
elaborated in the subsequent sub-section.

A. Application-specific Classification using SOM

The incoming traffic from IloT-based application can be di-
vided into groups based on the significance of each application
in terms of tactile assurances. The payload type, port number,
and other attributes allow for the differentiation of incoming
packets. The proposed strategy relies on the incoming traffic
classification in Table [l

To improve the QoS for IloT-based applications, SOM,
based on an Artificial Neural Network (ANN), divides in-
coming traffic into two distinct classes: tactile and non-tactile.
Consequently, the approaching traffic forms two lineups. i.e.,
Qrs (Tactile Service) and Quts (Non-tactile Service).

e Training: In this phase, we generate a vector that

responds uniformly to a homogeneous traffic pattern.

TABLE I: Application-Specific Classification Based on

Latency
Latency| Tentative Applications Category
< Ims | Smart Manufacturing, Industrial Secu- | Tactile-Based
rity, Energy Management, Industrial | Services
Automation, Remote Monitoring
> Ims | Other applications Non-Tactile-
based Services

Initially, the neurons’ weights are assigned by using an
eigenvector to ignite the iteration process. SOM is an
unsupervised learning model that clusters the unlabeled
dataset for training the model. The SOM model maintains
the topological properties of the collected input by using
competitive learning methods.

o Mapping: Initially, the random weights are assigned to
the neurons to open the training process. In the mapping
phase, the weight vector searches for the best weight
matches the sample. In the next phase, the neighbor-
ing weights that match the selected weight vector are
rewarded with the same weight to create a cluster of
similar weights (properties) using the Euclidean distance
and finalizing the best machine unit.

B. Binary Tree-based Flow Table Optimization

Binary tree is a data structure that stores the data blocks
hierarchically [[I7]. It is a non-linear data storage approach
where the stored data is neither linear nor sequential. The
working structure of the binary search tree is shown in Fig. 3]

Reference Node

Value <6 Value > 6
Children
Node

©

In the binary tree structure, the leaf node (reference node)
stores the key value of the children node and the children
node stores the actual data. A tree is binary only if a leaf
node contains two child nodes and similar patterns at various
levels. In the next level, if the key value of the leaf node is
less, then the data is stored on the left node, otherwise on the
right node.

In the proposed scheme, the binary tree is used to manage
the flow table entries to improve the lookup speed while
matching the flow table entries with the generated flow rules.
The binary tree storing the flow table entries provides manifold
benefits, such as application-based indexing, direct and se-
quential searching, and faster data insertion and retrieval. Here,
only two flow tables are stored on the configured devices:
tactile and non-tactile. The tactile-based flow table matches

Children
Node

Children Children
Node Node

Fig. 3: Binary Tree Structure
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the packets (Tactile-based services in Table [I) with the flow
table entries to provide latency-free services. On the other
hand, the packet flow rules (Non-tactile services in Table
match the Non-tactile flow table for data forwarding. In the
proposed scheme, the critical value of the leaf node is assigned
considering the latency metric, i.e., the time taken to transfer
the data/packets from one end to another. According to ITU-
T Technology Watch Report [18], the maximum latency a
tactile network may tolerate is 1 ms. Therefore, 1ms latency is
considered a threshold value while segregating the flow entries
in the two defined flow tables (Tactile-based and non-tactile-
based), as demonstrated in Fig. E}

Flow entry

Fetch Latency

Reference Node (msec)

atency > 1 ms

MAC | MAC | Dst Dst | e MAC | MAC | Dst Dst
Src Dst P

Port Src Dst P Port

18.12 | 5050 * * 15.16 | 5050

Tactile-based flow table Non-tactile-based flow table

Fig. 4: Flow Table Optimization using Binary Tree

C. Application-based Tactile-driven Mapping Scheme

In this scheme, the flow table entries are segregated and
stored into two flow tables depending upon the priority
of the incoming packets from a particular application. The
scheme helps to configure the low-latency tactile network.
The Algorithm [T]shows the proposed application-specific data-
sharing workflow and flow table optimization mechanism.
The incoming traffic from various applications is mapped
with the SOM model to fetch the priority of the application,
and accordingly, the Tactile-based (St) or Non-tactile-based
services (Syr) are provided (lines 1-9). If the application is
eligible for Sy, the flow rule of the application packets is
mapped with the Tactile-based flow table (FTt) and maintains
the quality of the service. In another case, the packet flow rule
matches the normal flow table (Non-tactile-based) (FTyr) for
flow forwarding. The time, packet reach to the destination,
and packet latency is calculated for futuristic purposes (line
10-20). If the calculated latency is less than 1 msec and the
application is eligible for St, existing flow entry (FE) latency
is compared. If the existing FE latency exceeds the current
flow rule latency, the existing FE is replaced with the current
formulated FE that leads towards tactile network expectations.
If a FE for an application does not exist in the FTt, a new
entry is stored in the FTr (lines 21-31).

IV. REAL-TIME ANOMALY DETECTION

The dynamic growth of the network due to the configu-
ration of network devices worldwide resulted in an increase

Algorithm 1 Application-specific Data Sharing Mechanism

Input: Drone Traffic Packet: P
Output: Matched FE
1: for i # NULL do
2 for j # NULL do
3 Assign random weights to neurons: W;; € (0,1)
4: Target input vector: D
5: Calculate D(; jy = />, (yi — xi)?
6.
7
8

BMU < MIN(Dy; ;)
Reiterate BMU neighbourhood weights
Mapping: P; € (Sr, Snr)

: > P — Packet
9: end for

10: if P; € Sr then

11: Fetch: FTt

12: Mapping: Flow rule = Flow table

13: Packet forwarding to destination

14: Calculate the latency of the service (L;)
15: else

16: Fetch: FTnt

17: Mapping: Flow rule = Flow table

18: Packet forwarding to destination

19: Calculate the latency of the service (L;)
20: end if

21: if L; <1 & i € St then

22: Fetch FE € P; from FTp

23: if FE ## NULL then

24: Fetch L,;q from FE > Lyq — Old Latency
25: if Lo;g > L; then

26: Override: FE,;4 with FE;

27: end if

28: else

29: Insertion: FT; into FTr

30: end if

31: end if

32: end for

in traffic flow rate over the underlying networks. With the
surge in traffic, the rate of malicious attacks and anomalies
also increased [19]]. Therefore, a model is required for a
preliminary inspection of the incoming traffic and discarding
the anomalous traffic from the network. Therefore, SVM, an
ML model, is integrated with the underlying network for
anomalous traffic detection. The SVM is a supervised learning
model to analyze the data for classification and regression
analysis.

Initially, the model is trained using the appropriate dataset,
and accordingly, the provided input is classified into defined
classes. The considered dataset is divided into 80:20 ratios for
training and testing purposes. The 80% data of the dataset is
used for training purposes, and the rest 20% data is for testing
purposes. The training and testing of the model are discussed
in the below-mentioned points.

o The training dataset of n points is given as:

(mlayl)w-'v(a}nayn) (1)

where, y; indicates the extracted output in-terms of labels
(1, -1) for the considered x; data points.

o The nonidentical data points must be separated and
divided into desired classes for identification purposes.
The positioning of the data points is decided as per the
values extracted by the given equations:

wl —b>0 2
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wl —b<0 3)

where, w is defined as vectors(wg, wy,ws, ..., Wy), T
is the summation of different dimensional data points,
and b is the biased value. If the sum of the projection of
the data point and vector and biased value is greater than
or equal to 0, the data point is labelled as 1, as shown
in Eq. (2), and if the sum of the projection of the data
point and vector and biased value is less than 0, labelled
as -1 shown in Eq. (3) and accordingly the data points
are positioned in the plane at initial stages.

+ To improve the model’s accuracy, there is a need to
maximize the margins (d) between the data points. The
d is calculated by using following equation.

2

d=—
[|wl|

@)
To maximize the distance/margin between two noniden-
tical data points, there is a need to minimize the value of
w and in-resultant a distinct hyperplane is formulated to
classify the objects into defined classes.

« Finally, the trained model is tested using the 20% dataset

to check the accuracy of the proposed model.

o Further, the trained model is tuned to improve the accu-

racy of the proposed model.

The trained model is configured in the underlying network
for anomalous traffic detection, and the anomalous traffic is
halted for further processing. The detailed working of the
proposed model is shown in Fig. [5]

ﬁxﬁ devices)
ranking

‘8' 'l"ackcﬁ Out

SVM
%‘é ln\in
Pulmld j& % j& /

Fig. 5: Adaptive SVM-based Anomaly Detection

Packet_In

Cloud

The step-wise working of the model is mentioned in the
Algorithm 2] The incoming packet from the configured devices
is initially forwarded to the packet analyzer. The packet
analyzer fetches the packet header and payload from the sent
packet (Step 1-4). The fetched header is forwarded to the
trained SVM model to analyse the signature of the incoming
traffic from various connected input devices. The trained SVM
model labels the header as per the model’s classification
(Normal: 1, Anomalous: -1) (Step 5). If the header’s label is
-1, the Packet_In request is generated and redirected towards
the configured SDN controller for further processing. The SDN
controller creates a new flow rule to cease the respective traffic
from the network. The SDN controller generates Packet_Out
request to implement the generated flow rule on the configured
switches in the network. In continuation, the SDN controller
forwards a packet to the Cost Agent to update the ranking of
the input device (Ranking) for futuristic purposes (Step 6-10).

Initially, the ranking of the input devices is considered as 1
and with the flow of the traffic and type of traffic generated
by the input devices, the ranking of the same is updated.

In case, the label is 1, the request is forwarded to the
respective flow table to fetch the flow rule entry that helps
to redirect the traffic to the designated switch (Step 12-13).
The packet analyzer initially segregated the packet into header
and payload. The header is used to identify the type of traffic
forwarded by the input device. At the same time, the fetched
payload of the traffic is forwarded to the cloud framework.
The signature updation of the anomalous traffic is a dynamic
process. Therefore, an adaptive framework is required to
update the system by updating the signatures of the anomalous
traffic. To consider the same, the Age of Information (Aol)
concept is used for periodic training of the SVM model. The
threshold value to train the model depends upon the traffic
flow rate in the underlying network.

The cloud framework is used to train the model for dynamic
anomaly signature detection of the incoming traffic. The
trained model is implemented on the Filter Agent configured
on the underlying network for continuous packet analysis
(Steps 15-18).

Algorithm 2 Adaptive SVM-based Anomaly Detection
INPUT: Incoming Traffic: T
OUTPUT: IIoT devices ranking: R
1: while (T # null) do
2: Packet Analyzer: (H,P) < T >
H : Header, P : Payload
: Forward: H — SVM

Forward: P — Cloud
Classify H

3

4

5: > Refer Sec.
6: if Label==-1 then

7

8

9

> -1: Anomalous
Generate: Packet_In

SDN Create Flow Rule: F,.,;.

: Packet_Out(F,.,;.) — Switches

10: Update: R

> Ranking
11: else
12: Fetch: F,.,;. < Flow Table
13: Redirect: T as per ..
14: end if
15: Fetch: P
16: Forward: P — V,, > V,, : Virtual Machine

17: Training SVM on V,,,

18: Implement: T,, — Filter Agent
Model

19: end while

> Refer Sec.
> T,,: Trained

V. RESULT AND DISCUSSION

The considered dataset and the evaluated results simulating
the proposed scheme are discussed in the subsequent sections.

A. Datasets Used

Network-based Dataset. The statistical information about
the network is gathered in the dataseﬂ and further used to train

3https://research.unsw.edu.au/projects/unsw-nb15-dataset
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and test the model. There are 49 classes labeled network-based
features in the included dataset. The data pre-processing of
all the network features in the dataset considering the mean,
standard deviation, minimum, and maximum range of the
numbers is shown in Table[[l] The feature, attack_cat, indicates
the type of the synthetic attack generated in the network.

Environments. For the proposed scheme’s experimental
testbed, a Spark YARN cluster of 1 master and 3 workers
are configured, each with a capacity of 4 cores and 16 GB
of memory. The operating system for each node is Ubuntu
Server 20.04 LTS, SSD Volume Type. The Spark version is
3.3.0, and the Hadoop version is 3.3.4.

TABLE II: Statistics of the Dataset

Features Mean Std. dev.  Min. Max.
dur 1.359389 6.480249 0 59.99999
proto 109.6067 22.3526 0 132
service 1.61892 2.305151 0 12
state 2.355176 0.8679419 0 8
spkts 20.29866 136.8876 1 9616
dpkts 18.96959 110.2583 0 10974
sbytes 8844.844 174765.6 28 12965230
dbytes 14928.92 143654.2 0 14655550
rate 95406.19 165401 0 1000000
sttl 179.547 102.94 0 255
dttl 79.60957 110.5069 0 254
sload 73454030 188357400 0 5988000000
dload 671205.6 2421312 0 22422730
sloss 4.953 66.00506 0 4803
dloss 6.94801 52.733 0 5484
sinpkt 985.9769 7242.246 0 84371.5
dinpkt 88.2163 987.0932 0 56716.82
sjit 4976.254 44965.85 0 1460480
djit 604.3538 4061.043 0 289388.3
swin 116.2573 127.001 0 255
stcpb 969250400 1355264000 0 4294959000
dtcpb 968877000 1354000000 0 4294882000
dwin 115.0136 126.8865 0 255
teprtt 0.04139564 0.07935397 0 2.518893
synack 0.02102045 0.04339978 0 2.100352
ackdat 0.02037519 0.04050636 0 1.520884
smean 136.7518 204.6774 28 1504
dmean 124.1734 258.3171 0 1458
trans_depth 0.1059821 0.7769108 0 172
response_body_len 2144.292 54207.97 0 6558056
ct_srv_src 9.306437 10.70433 1 63
ct_state_ttl 1.304179 0.9544061 0 6
ct_dst_Itm 6.193936 8.052476 1 51
ct_src_dport_ltm 5.383538 8.047104 1 51
ct_dst_sport_ltm 4.206255 5.783585 1 46
ct_dst_src_ltm 8.729881 10.95619 1 65
is_ftp_login 0.01494802 0.126048 0 4
ct_ftp_cmd 0.01494802 0.126048 0 4
ct_flw_http_mthd 0.1330664 0.7012076 0 30
ct_src_ltm 6.955789 8.321493 1 60
ct_srv_dst 9.100758 10.75695 1 62
is_sm_ips_ports 0.01575216 0.1245155 0 1
Feature 0.8196999 0.3844383 0 1
Average 50616.73 87671 1.0 17534.1
B. Results

This section discusses the performance of binary tree-based
flow table optimization, energy consumption, tactile/non-
tactile-based traffic classification and anomaly detection.

1) Flow Table Optimisation: The proposed scheme aims
to achieve the tactile characteristics in the underlying net-
work. The performance of the proposed model is calculated

considering two scenarios: a) the performance metrics using
the SOM model, and b) the performance metrics related to
data insertion time, latency, and lookup time to search for
flow entry in the flow table. In the binary tree-based table
optimization approach, the incoming traffic is segregated into
two classes, namely tactile and non-tactile-based applications.
The categorization of the network applications into tactile and
non-tactile applications is presented in Table [ Time-sensitive
and real-time processing-based applications are classified as
tactile-based applications, and others are labeled as non-tactile-
based applications.

Considering the above mentioned scheme, the flow rules are
segregated into two flow tables: Tactile-based and Non-tactile-
based. In this context, Fig. @ shows the results related to the
insertion time of flow entries, comparing the binary tree-based
approach with the standard/baseline approach.

0.024 1
0.022 1
0.020 1
0.018 1
0.016 1
0.014 1
0.012 1
0.010 1
0.008
0.006 1
0.004 1
0.002 1
0.000 1
-0.002

77/} Standard

Flow entry insertion time (secs)

T 5 . 0 T
Number of entries in Flow Table

Fig. 6: Binary Table Insertion Overhead

Fig. [/| demonstrates that the lookup time for proposed
scheme outperforms the standard approach, thus validating the
conditions of tactile network. It shows that the proposed ap-
proach handles and processes application priorities effectively.

2) Energy Consumption: Classifying traffic into tactile and
non-tactile categories, rather than treating all traffic as tac-
tile in IIoT environments can save a substantial amount of
energy. Differentiating between tactile and non-tactile traffic
processing requirements and corresponding resource demands
leads to this efficiency. High-power setups are frequently used
in tactile applications, which demand minimal latency, better
responsiveness and real-time processing. However, non-tactile
traffic can be handled with lower-performance setups or less
power-intensive equipment because it may tolerate some delay.
By dividing traffic and assigning resources according to their
requirements, the system can prevent over-provisioning and
lower total power consumption. The energy consumption to
process the specified entries in the flow table is compared in
the Fig. [§] The numbers clearly demonstrate that the proposed
approach is energy-efficient when matching rules from both
tactile and non-tactile-based flow tables. Binary-based flow
tables reduce memory utilization and enhance lookup speed,
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leading to a direct reduction in energy consumption during
network operations.
In similar manner, the Fig. 0] reflects the energy consump-

Z
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tion while processing the classified traffic as compared to Non-
classified traffic in IIoT environment.
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3) Anomaly Classification: SOM is used to classify the
incoming traffic and accordingly label it as Tactile-based

Services or Non-Tactile-based Services Traffic mentioned in
Table [l The network traffic metrics are analysed using the
SOM classification approach, and Fig. shows the SOM-
based distance map over the number of collected metrics.
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Fig. 10: SOM-based Tactile and Non-Tactile Application
Classification

In Fig. the red maps are the metrics classified as
non-tactile-based applications, and the maps in green are the
tactile-based applications. The performance of SOM-based
classification is highlighted in the Fig. [TT] The proportion of
correctly classified data points using defined dataset (Accu-
racy) is calculated by using the following metrics.

ur =

where, TP is the True Positive, FP is the False Positive, FN
is the False Negative,and TN is the True Negative labels. The
Precision is calculated by using the below mentioned equation:

TP

P .. _
recision 7TP TFP

(6)
The true positive rate (Recall) is calculated by using the
below mentioned equation:

TP

Recall = ——
A= TP FEN

(N
The F1 Score is calculate using Eq. [8]

(Precision * Recall)
F1 S =2%* 8
core (Precision + Recall) ®)

4) Anomaly Detection: The underlying network is config-
ured with a trained model (SVM) for detecting anomalous
traffic and stopping positive traffic (Anomalous) for further
processing. The simulated results of training and testing the
SVM model is promising and highlighted in Fig. [I2] with the
numbers to label the traffic as normal or anomalous.
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VI. CONCLUSION

The rapid development of IloT paradigm has led to a new
era of enhanced monitoring and control of industrial appli-
cations. The timely transfer of industrial data and handling
anomalies in data traffic is essential in IloT environment,
as otherwise it may impact overall operational performance.
Complex environments and limited communication bandwidth
make it difficult for underlying network to process data traf-
fic with tactile guarantees. This paper proposes an energy-
efficient tactile data sharing mechanism that differentiates
the tactile traffic from the normal one and process it with
lower lookup time using a dynamic SDN policy. Additionally,
this work adopts SVM to detect anomalies that can hinder
the performance of industrial data processing. The outcomes
look promising in terms of reduced overheads, lookup time
and energy consumption while achieving adequate accuracy
for the SOM and SVM models. Future work includes using
edge and cloud registering to decrease latency and improve
energy effectiveness in tactile-driven frameworks. Deploying
anomaly detection algorithms on edge devices facilitates real-
time analysis with minimal latency and enhanced scalability.
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