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Abstract
Out-of-order arrival of in-band network telemetry (INT) reports
severely degrades the accuracy of network measurements and the
efficiency of telemetry-driven applications. Existing FPGA-based
reordering approaches either focus solely on online or offline re-
ordering, failing to meet the concurrent requirements of real-time
responsiveness and large-scale data processing. In this paper, we
present𝑂2𝑅, a performance-conscious comparator allocation frame-
work that enables simultaneous online and offline reordering on a
single FPGA.𝑂2𝑅 dynamically adjusts the weighting of out-of-order
metrics, allocates comparator resources based on online/offline de-
mand, and performs proportional fine-tuning to prevent long-term
performance drift. Experimental results demonstrate that 𝑂2𝑅 re-
duces online reordering latency by 11.1%–20.5% and improves the
quality of partial ordering by 53.5%–73.6% compared with baseline,
thereby significantly enhancing the responsiveness and accuracy
of INT-based telemetry systems.
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1 Introduction
In-band Network Telemetry (INT)[8] has emerged as a promising
network measurement paradigm that embeds telemetry instruc-
tions and metadata within live data-plane traffic. This design en-
ables fine-grained, end-to-end, hop-by-hop visibility of the network
state without the need for additional probe traffic[11].

In modern large-scale networks, telemetry tasks are often orches-
trated through multipath[9] and multitask[2, 3] strategies, where
telemetry packets traverse multiple paths concurrently. However,
variations in path latency, congestion, and other network dynamics
can cause telemetry packets to arrive out of order at the receiver,
even when they originate from the same flow. Such packet reorder-
ing can be severe in practice[6].

The consequences of reordering are twofold. First, it undermines
temporal accuracy in network state analysis, which is crucial for
applications relying on precise timing information. Second, it can
lead to data loss or statistical distortion when telemetry data are
aggregated or correlated across flows. More specifically, INT-based
network management applications can be broadly categorized into
online and offline applications. Online applications place stringent
requirements on the freshness of telemetry data, as exemplified by
traffic engineering[5] and congestion control[4]. Offline applica-
tions are relatively less sensitive to data freshness, such as histori-
cal data analytics[10] and gray failure diagnosis[1]. Nevertheless,
out-of-order telemetry data adversely affects both categories of ap-
plications, thereby degrading their functionality and performance.

Field-Programmable Gate Arrays (FPGAs), owing to their highly
parallel and customizable hardware architecture, have been widely
adopted in high-performance data processing scenarios. Leveraging
FPGAs for reordering out-of-order telemetry data can fully exploit
their parallel processing capability and low-latency advantages.
However, existing approaches typically implement either online or
offline reordering in isolation and lack designs specifically tailored
to the multi-flow and multi-task characteristics of in-band network
telemetry[7]. As a result, they struggle to simultaneously meet the
stringent real-time requirements and large-scale data processing
demands of practical deployments.

Within an FPGA, the comparator unit (CU) is the key hard-
ware component that enables efficient reordering and reordering.
This hardware primitive allows FPGAs to significantly outperform
general-purpose CPUs and GPUs in INT packet reordering tasks.
The number of available comparator units directly determines the
degree of parallelism and resource utilization achievable on the
FPGA. Consequently, a pressing challenge for current INT systems
is how to efficiently reorganize out-of-order telemetry reports under
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Figure 1: The framework overview of 𝑂2𝑅.
the constraints of limited FPGA comparator resources, in a way that
supports both online and offline reordering simultaneously, thereby
providing ordered data to upper-layer telemetry applications.

In this paper, we take the first step toward addressing this chal-
lenge by proposing a comparator resource allocation method, 𝑂2𝑅,
that enables the simultaneous deployment of online and offline
reordering on a single FPGA accelerator card. 𝑂2𝑅 balances the
requirements of high-speed online real-time telemetry data analysis
and large-scale offline telemetry data processing, thereby improving
FPGA resource utilization and telemetry processing performance.

2 𝑂2𝑅
As shown in Fig. 1, due to path differences, the order of packets
participating in in-band network telemetry upon arrival at the
telemetry server does not match their transmission order, resulting
in out-of-order measurement results for intermediate overlapping
switches.
𝑂2𝑅 partitions the telemetry server into a host-side and an FPGA-

side. The host-side handles telemetry applications and data man-
agement, whereas the FPGA-side is dedicated to reordering out-of-
order telemetry results. The FPGA card is deployed with several on-
line reorder (OnReorder) modules and offline reorder (OffReorder)
modules. The telemetry results produced by the OnReorder module
remain partially ordered and are consumed by online telemetry
applications. A portion of the partially ordered telemetry results is
stored in the time-series database (TSDB) and subsequently fully
reordered by the OffReorder module, providing totally ordered data
for offline telemetry applications.

2.1 Problem Formulation
The FPGA comparator allocation problem for in-band network
telemetry out-of-order reordering can be formally described as
follows.

Let the total number of available comparator units be denoted
by𝑚. We allocate 𝑛1 comparators to the online reordering task and
𝑛2 comparators to the offline reordering task. This can be expressed
as a multi-objective optimization problem:

max
𝑛1,𝑛2

(
− 𝐿on (𝑛1), 𝑇off (𝑛2)

)
,

s.t. 𝑛1 + 𝑛2 ≤𝑚,
(1)

where 𝐿on represents the latency of the online reordering, and 𝑇off
denotes the throughput of the offline reordering.

2.2 Quantification of Out-of-order
To quantify the degree of out-of-order, 𝑂2𝑅 adopts the following
three metrics:

(1) Local Window Out-of-order Ratio (LWO). Within an online re-
ordering observation window, the LWO is defined as the proportion
of out-of-order packets to the total number of packets:

LWO =
𝑁dis
𝑁

, (2)

𝑁dis =
𝑁∑︁
𝑖=1

⊮
(
𝑝𝑖 ≠ 𝑝

ord
𝑖

)
, (3)

where ⊮(·) is the indicator function, which takes the value 1 if the
condition 𝑝𝑖 ≠ 𝑝ord𝑖 holds, and 0 otherwise. Here,𝑁 denotes the total
number of packets observed within the online reordering window;
𝑁dis denotes the number of packets that are out of order within the
window; 𝑝𝑖 represents the position index of the 𝑖-th packet in the
actual arrival sequence; and 𝑝ord𝑖 represents the expected position
index of the 𝑖-th packet in the ideally ordered sequence.

(2) Cross-Window Out-of-order Ratio (CWO). The CWO is defined
as the average proportion of cross-window out-of-order packets
between two consecutive online reordering windows:

CWO =
1

𝐾 − 1

𝐾−1∑︁
𝑘=1

𝑁𝑘→𝑘+1 + 𝑁𝑘+1→𝑘
𝑁 (𝑘 ) + 𝑁 (𝑘+1)

, (4)

where 𝑁𝑘→𝑘+1 denotes the number of packets whose ideal positions
belong to window 𝑘 but are actually observed in window 𝑘 + 1,
and 𝑁 (𝑘 ) and 𝑁 (𝑘+1) denote the total number of packets within
windows 𝑘 and 𝑘 + 1, respectively. Here, 𝐾 represents the total
number of online reordering windows under observation.

(3) Weighted Out-of-order Distance (WOD). The WOD is defined
as the average displacement of each out-of-order packet from its
correct position in the ideally ordered sequence:

WOD =
1
𝑁dis

𝑁∑︁
𝑖=1

⊮
(
𝑝𝑖 ≠ 𝑝

ord
𝑖

)
·
���𝑝𝑖 − 𝑝ord𝑖 ��� . (5)

In summary, LWO measures the short-term out-of-order degree
within a single online window, CWO captures the global out-of-
order degree across consecutive windows, and WOD quantifies the
displacement distance of out-of-order packets. All these metrics are
continuously updated in real time on the FPGA data plane using a
hardware pipeline.
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2.3 System Model
Based on Eq. 1, we define the overall system utility of 𝑂2𝑅 as

𝑈 (𝐿on,𝑇off ) = 𝜆1 · 𝑓on (𝐿on) + 𝜆2 · 𝑓off (𝑇off ) , (6)
where 𝑓on (·) and 𝑓off (·) are utility functions that map the online
reordering latency 𝐿on and offline reordering throughput 𝑇off to
normalized utility values, respectively. The parameters 𝜆1 and 𝜆2
are weighting factors that balance the contributions of online and
offline objectives.

The two utility component functions are defined as follows:

𝑓on (𝐿on) =
𝐿target

𝐿on + 𝐿target
, (7)

𝑓off (𝑇off ) =min
(
𝑇off
𝑇target

, 1
)
, (8)

where 𝐿target denotes the target online reordering latency and𝑇target
denotes the target offline reordering throughput. The function
𝑓on (𝐿on) monotonically decreases with latency, thus rewarding
lower online latency, while 𝑓off (𝑇off ) increases with throughput
and is capped at 1 once the throughput target is achieved.

Then, we define the resource demand evaluation functions for
online and offline reordering, denoted by 𝐷on and 𝐷off , respectively,
as follows:

𝐷on =𝑤1 · LWO +𝑤2 ·WOD′, (9)
𝐷off =𝑤3 · CWO, (10)

where WOD′ =min (WOD/WODmax, 1). Since the value range
of the WOD depends on the scale of telemetry packets, we adopt
the normalized weighted disorder distance WOD′ as the metric
for quantifying the severity of reordering. The parameters𝑤1,𝑤2,
and 𝑤3 are weighting coefficients. 𝐷on ∈ [0, 1] and 𝐷off ∈ [0, 1]
represent the normalized comparator resource demand intensities
for online and offline reordering, respectively.

Furthermore, we define the resource allocation ratio for online
reordering, denoted by 𝑅on, as

𝑅on =
𝐷on + 𝜖

𝐷on + 𝐷off + 2𝜖
, (11)

where 𝜖 > 0 is a smoothing factor introduced to ensure the stability
of the allocation.

Next, we define the expected performance of online and offline
reordering under a given number of comparators. For online re-
ordering, the predicted processing latency is

𝐿pre (𝑛1) = 𝐿base +
𝑤

𝑛1 · 𝑓clk
, (12)

where 𝐿base denotes the base latency including data reception and
preprocessing time,𝑤 is the online reordering window size, 𝑛1 is
the number of comparators allocated to online reordering, and 𝑓clk
is the FPGA clock frequency. For each arriving packet, the parallel
comparators quickly insert it into the correct position. The number
of comparators determines the parallel processing capability of
online reordering undermultiple telemetry flows. Consequently, the
processing latency is proportional to the window size and inversely
proportional to the number of comparators.

Offline reordering can be regarded as a conventional parallel
comparison process. Given the size of data to be reordered and the
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Figure 2: The algorithm procedure of 𝑂2𝑅.
available offline comparators, the predicted reordering throughput
can be expressed as

𝑇pre (𝑛2) =
𝑛2 · 𝑓clk

log2 (𝑁 · 𝐾)
, (13)

where 𝑁 · 𝐾 is the data size, log2 (𝑁 · 𝐾) represents the number
of merge levels in a merge-sort-based algorithm, and 𝑛2 is the
number of comparators allocated to offline reordering. The number
of comparators determines the parallel processing capability at each
merge level. Thus, the throughput is proportional to the number
of comparators and inversely proportional to the logarithm of the
data size.

2.4 Performance-conscious Allocation
We propose a performance-feedback-based FPGA comparator re-
source allocation algorithm, which consists of three key compo-
nents, as shown in Fig. 2:

(1)AdaptiveWeight Adjustment: This component updates the
weights of the out-of-order metrics (LWO, CWO, andWOD) used in
the resource allocation decision process bymonitoring the deviation
between actual system performance and target performance. In
doing so, it enables the allocation strategy to adapt to dynamic
network conditions while maintaining system stability, as shown
in Alg. 1, where 𝛽 ∈ [0, 1] is a smoothing factor used to prevent
rapid changes in the weights.

(2) Resource Allocation Control: Serving as the main control
loop of the comparator resource allocation process, this component
determines the resource distribution by leveraging the weights ob-
tained from the adaptive weight adjustment component, as shown
in Alg. 2.

(3) Proportional Fine-Tuning Control: Built upon the re-
source allocation control component, this component performs
fine-grained adjustments to correct residual performance devia-
tions, preventing long-term performance drift and avoiding oscilla-
tions in the comparator resource allocation process, as shown in
Alg. 3. In this algorithm, 𝑢𝐿 represents the suggested resource ad-
justment for online reordering in the latency dimension. If 𝑢𝐿 > 0,
the actual latency is lower than the predicted target, and thus the
comparator resources allocated to online reordering can be slightly
reduced. Conversely, if 𝑢𝐿 < 0, the actual latency exceeds the pre-
dicted target, requiring an increase in comparator resources for
online reordering. Similarly, 𝑢𝑇 represents the suggested resource
adjustment for offline reordering in the throughput dimension. If
𝑢𝑇 > 0, the actual throughput is higher than the predicted target,
and thus the comparator resources allocated to offline reordering
can be slightly reduced. If 𝑢𝑇 < 0, the actual throughput is lower
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Algorithm 1: Adaptive Weight Adjustment
Input :LWR,CWR,WDD; 𝐿actual,𝑇actual; 𝐿target,𝑇target;

𝑤
prev
1 , 𝑤

prev
2 , 𝑤

prev
3

Output :𝑤′1, 𝑤
′
2, 𝑤

′
3

Parameters :𝜃𝐿, 𝜃𝑇 , 𝛼1, 𝛼2, 𝛼3, 𝛽, 𝑤min, 𝑤max

1 𝐸𝐿 ←
|𝐿actual − 𝐿target |

𝐿target
, 𝐸𝑇 ←

|𝑇actual − 𝑇target |
𝑇target

2 if 𝐸𝐿 > 𝜃𝐿 then
3 Δ𝑤1 ← 𝛼1 · 𝐸𝐿 , Δ𝑤2 ← 𝛼2 · 𝐸𝐿
4 else
5 Δ𝑤1,Δ𝑤2 ← 0
6 if 𝐸𝑇 > 𝜃𝑇 then
7 Δ𝑤3 ← 𝛼3 · 𝐸𝑇
8 else
9 Δ𝑤3 ← 0

10 for 𝑖 ← 1 to 3 do
11 𝑤𝑖 ← 𝑤

prev
𝑖
+ 𝛽 · Δ𝑤𝑖

12 𝑤′𝑖 ←
𝑤𝑖∑3
𝑗=1 𝑤𝑗

, 𝑖 = 1, 2, 3

13 for 𝑖 ← 1 to 3 do
14 𝑤′𝑖 ← min

(
max(𝑤′𝑖 , 𝑤min ), 𝑤max

)
15 return 𝑤′1, 𝑤

′
2, 𝑤

′
3

than the predicted target, necessitating an increase in comparator
resources for offline reordering. And 𝐾𝑝 is the proportional gain,
𝛼 is the maximum adjustment ratio, and floor(·) denotes the floor
(round-down) function.

3 Evaluation Results
We complete the verification on Xilinx VU37P FPGA, which is
equipped with a 10GE port. We generate between 10 and 50 con-
current INT flows. Each flow is randomly distributed across three
sub-paths, with the path delay of the 𝑖-th sub-path modeled as
𝑑𝑖 ∼ N(𝜇𝑖 , (2 ms)2) where 𝜇𝑖 ∈ {7, 10, 13} ms. This setup induces
packet reordering at the telemetry server. For offline reordering,
we prepare a fixed batch of 512/1024/2048 MB of telemetry data as
the workload to stress the offline reordering.

As shown in Fig. 3, The𝑂2𝑅 achieves a 11.1%–20.5% reduction in
online reordering latency compared with baseline[7].𝑂2𝑅 improves
the quality of the online reordering result, achieving a 53.5%–73.6%
reduction in the local disorder rate.

4 Conclusion
This paper introduces 𝑂2𝑅, the performance-conscious FPGA com-
parator allocation framework for INT reordering. Future work will
explore adaptive window sizing, integration with multipath-aware
schedulers, and extending 𝑂2𝑅 to heterogeneous accelerators for
improved scalability and energy efficiency.
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Algorithm 2: Resource Allocation Control
Input :𝑤′1, 𝑤

′
2, 𝑤

′
3,𝑚

Output :𝑛1, 𝑛2
Parameters :𝜖

1 Update 𝐷on and 𝐷off according to Eqs. 9 and 10
2 Update 𝑅on according to Eq. 11
3 𝑛1 ← ⌊𝑚 · 𝑅on ⌋
4 𝑛2 ←𝑚 − 𝑛1
5 return 𝑛1, 𝑛2

Algorithm 3: Proportional Fine-Tuning Control
Input :𝑛1, 𝑛2; 𝐿actual,𝑇actual
Output :Updated 𝑛1, 𝑛2
Parameters :𝐾𝑝 , 𝛼

1 𝑒𝐿 ← 𝐿pre (𝑛1 ) − 𝐿actual, 𝑒𝑇 ← 𝑇pre (𝑛2 ) − 𝑇actual
2 𝑢𝐿 ← 𝐾𝑝 · 𝑒𝐿, 𝑢𝑇 ← 𝐾𝑝 · 𝑒𝑇
3 Δ𝑛1 ← floor

(
𝑢𝐿 · 𝑛1 · 𝛼

)
, Δ𝑛2 ← floor

(
𝑢𝑇 · 𝑛2 · 𝛼

)
4 return Δ𝑛1,Δ𝑛2
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Figure 3: The improvement result of 𝑂2𝑅.
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