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Abstract—In-band Network Telemetry (INT) provides fine-
grained, path-level network visibility by embedding measurement
data into live packets. However, the nested, spatiotemporal nature
of INT data poses significant challenges for traditional telemetry
storage systems, which are primarily optimized for time series
data. In this paper, we present IntDB, a spatiotemporal database
for INT. IntDB introduces a path-oriented data model that
preserves end-to-end flow structure and supports efficient multi-
hop correlation and querying. Experimental results show that
IntDB outperforms existing solution in both writing scalability
and query performance, making it a practical foundation for
INT-based network measurement.

Index Terms—Network Measurement; In-band Network
Telemetry; Spatiotemporal Data; Telemetry Database

I. INTRODUCTION

Network measurement forms the foundation of network
management. Traditional methods, such as SNMP [1] and
NetFlow [2], have been extensively used in large-scale net-
work operations [3]. With the emergence of software-defined
networking (SDN) and data plane programmability, network
devices like switches have gained enhanced functionality
and flexibility, giving rise to a variety of network telemetry
techniques [4]. As a new paradigm, network telemetry is
commonly categorized into out-of-band network telemetry
(ONT) [5] and in-band network telemetry (INT) [6]. ONT
extends conventional protocols to collect measurement data
outside the data path, whereas INT leverages programmable
data planes to embed telemetry information directly within
packets as they traverse the network.

As modern networks grow in scale and complexity [7],
point-level measurement approaches—such as SNMP, Net-
Flow, and ONT—have become increasingly insufficient for
comprehensive network management, particularly in diagnos-
ing and analyzing faults [8]. In contrast, path-level mea-
surement techniques like INT capture multi-hop, end-to-end
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telemetry data, enabling accurate fault localization and trans-
mission quality assessment. These have seen practical deploy-
ment in data center networks [9] and wide-area networks [10].

However, as illustrated in Tab. I, the challenge of effi-
ciently storing and managing massive volumes of teleme-
try data—particularly from path-level measurements—remains
largely unresolved. Because point-level measurement has long
been the dominant paradigm, existing storage architectures for
network telemetry are primarily designed around time series
data. Time series databases (TSDBs), exemplified by InfluxDB
[11], and data stream processing platforms like Apache Kafka
[12], are inherently optimized for scalar, time-indexed data
streams and fall short in supporting the complex requirements
of path-level telemetry.

In particular, when applied to INT, current data storage solu-
tions represented by TSDBs exhibit the following limitations:

1) Data Model Misalignment. INT telemetry data is in-
herently path-oriented and consists of nested, multi-hop
records. Traditional TSDBs, designed for flat, metric-
centric time series, fail to represent the spatiotemporal
semantics of INT data, leading to the loss of end-to-end
path structure.

2) Inefficient Write Operations. INT data is typically
generated in batches per flow, with non-uniform intervals
and complex nested formats. This deviates from the
high-frequency, scalar, and uniform data patterns that
TSDBs are optimized for, resulting in degraded write
throughput and poor storage efficiency.

3) Limited Query Expressiveness. TSDBs primarily sup-
port simple time-windowed queries over individual met-
rics, lacking native support for path-level queries such
as hop-by-hop correlation, bottleneck detection, or flow
reconstruction. This severely restricts their usability for
INT-specific analysis tasks.

In this paper, we conduct an in-depth analysis of the data
storage and query requirements of INT, and propose IntDB, a
telemetry database specifically designed to address the unique
characteristics of INT data. IntDB introduces a path-oriented



TABLE I: Comparison of measurement types and their corresponding storage systems

Measurement Type Representative Method Data Characteristics Representative Storage System
Point-level SNMP, NetFlow, ONT Time series (per-node metrics) InfluxDB
Path-level INT Spatiotemporal sequence (per-flow multi-hop metrics) Not well supported

data model, supports spatiotemporal correlation, and enables
expressive, INT-native queries over multi-hop flows. This
paper makes the following key contributions:

• We identify the fundamental limitations of existing
telemetry storage systems in handling in-band network
telemetry, including data model misalignment, inefficient
writes, and weak query expressiveness.

• We design and implement IntDB, a spatiotemporal
database tailored for INT, which preserves path semantics
and supports multi-hop correlation and query. We present
a unified data model and query abstraction for INT that
enables expressive, flow-level spatiotemporal analysis.

• We open-source IntDB1, evaluate its performance and
effectiveness, and compare it with traditional telemetry
storage architectures.

II. RELATED WORK AND MOTIVATION

As shown in Listing 1, INT is a network measurement
paradigm that integrates both spatial and temporal dimensions.
Existing data storage technologies fall short of meeting its
requirements. TSDBs destroy the inherent path structure of
INT data by flattening measurements into scalar time series,
while Graph or Spatiotemporal Databases, though capable of
representing relationships, often incur poor read/write perfor-
mance and are not optimized for high-throughput telemetry.
Furthermore, current query mechanisms for INT are frag-
mented and lack unified design principles.

Gupta et al. [14] proposed Sonata, a query-driven telemetry
system that dynamically partitions streaming queries between
programmable switches and stream processors. While effective
for packet-level analytics, its data model is not designed to
capture multi-hop path semantics, limiting its support for
INT-specific tasks such as end-to-end path reconstruction or
hop-level correlation. Liu et al. [15] developed a Kafka-
based high-throughput telemetry platform deployed in ESnet.
Although it demonstrates impressive ingestion performance
and supports stream processing via Kafka APIs, its topic-
based storage architecture lacks structured representation of
flow paths, making path-aware querying difficult.

Sgambelluri et al. [16] introduced a Kafka-based framework
for optical network telemetry, combining real-time filtering
with visualization in InfluxDB. However, similar to other
TSDB-based solutions, it cannot preserve the end-to-end path
structure of INT data, and thus struggles with spatiotemporal
queries. Tovarňák et al. [17] presented a cloud-native analytics
platform based on the Data Lakehouse model using compo-
nents like Apache Kafka, Iceberg, and Spark. Their system is
optimized for traditional point-level telemetry such as IPFIX

1https://github.com/lzhtan/Intdb

Listing 1: Example of an In-band Telemetry JSON Record
{

"flow_id": "17343111536",
"telemetry": [
{

"switch_id": "s1",
"timestamp": "2025-04-21T10:00:00Z",
"queue_util": 0.72,
"delay_ns": 600

},
{

"switch_id": "s2",
"timestamp": "2025-04-21T10:00:01Z",
"queue_util": 0.64,
"delay_ns": 580

},
{

"switch_id": "s3",
"timestamp": "2025-04-21T10:00:02Z",
"queue_util": 0.01,
"delay_ns": 510

}
]

}

and Syslog, but does not address the data modeling or query
needs of INT. Zhou et al. [18] proposed PCAT, an evolvable
telemetry framework that emphasizes monitoring intent evolu-
tion and configuration change management. Although it adopts
a heterogeneous backend including SQL and key-value stores,
its focus is on system adaptability rather than modeling and
querying path-level telemetry data.

Collectively, these systems emphasize either scalability,
configurability, or query flexibility. None of them offers a uni-
fied, path-oriented data model or an INT-native query abstrac-
tion that preserves and utilizes the spatiotemporal semantics
of multi-hop telemetry data. Our work addresses this gap by
proposing IntDB, a telemetry database designed specifically
to support efficient storage, modeling, and querying of INT.

III. DESIGN OF INTDB

In this section, we describe the design and architecture of
IntDB, a spatiotemporal database built specifically for INT.
IntDB is designed to address the unique characteristics of INT
data, including its path-oriented semantics, multi-hop nested
structure, and complex query requirements.

A. System Overview

The architecture of IntDB is tailored to the unique charac-
teristics of INT, which captures per-packet measurement data
across multiple hops along a network path. Unlike point-level
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Fig. 1: System architecture of IntDB.

telemetry systems, which store and query independent time
series, INT requires path-aware data ingestion, spatiotemporal
preservation of flow structure, and fine-grained query capabil-
ities across hop sequences.

As shown in Fig. 1, IntDB adopts a modular, three-layer
architecture comprising an Ingestion Layer, a Storage Layer,
and a Query Layer.

• Ingestion Layer: This layer ingests telemetry records
exported from programmable switches (e.g., P4 targets)
or Kafka brokers carrying INT payloads. Unlike tradi-
tional append-only ingestion in TSDBs, the ingestion
layer reconstructs each telemetry flow into a coherent
path structure by grouping hop-level records using the
flow identifier. It ensures ordering, deduplication, and
path-completeness before committing records to storage.
For example, a flow traversing switches s1–s2–s3 will be
represented as a nested array with ordered hop entries.

• Storage Layer: At the core of IntDB is a storage engine
that preserves the multi-hop per-flow structure of INT
data. Each record stores not just individual metrics but the
spatial and temporal relationship between hops, enabling
cross-hop correlation and path reconstruction. The system
avoids flattening INT data into scalar time series, instead
supporting native storage of path-oriented nested records.
The layer also builds spatiotemporal indices that enable
efficient retrieval of flows traversing specific switches,
paths, or time intervals.

• Query Layer: The query layer exposes a declarative API
tailored for INT. It allows users to issue path-level queries
such as find all flows where queue utilization exceeded
90% on any hop. Such queries require preserving and
traversing hop sequences, which is infeasible in flattened
TSDB.

This design tightly integrates INT-specific semantics—such
as hop order, inter-hop timing, and per-flow path identity—into
each layer of the system, as shown in Tab. II. As a result,
IntDB supports scalable telemetry analysis that retains end-to-
end fidelity and enables powerful spatiotemporal queries over
in-band telemetry streams.

IntDB supports basic CRUD operations, including Cre-
ate/Insert, Read/Query, Update, and Delete. In addition, it also

TABLE II: Comparison of databases in handling INT data

Feature InfluxDB IntDB
Data
Granularity

Point-level Scalar
metrics per timestamp

Path-level nested teleme-
try per flow

Path Structure
Preservation

Flattened metrics, no
hop ordering

Preserves hop-by-hop or-
der and structure

Spatiotemporal
Semantics

Only time dimension Supports both spatial and
temporal dimensions

Query Support Basic metric filter-
ing, time-window ag-
gregation

Native path-aware queries

Storage Model Time-indexed colum-
nar series

Nested store with path in-
dexes

Indexing
Mechanism

Time, tag fields (lim-
ited)

Flow ID, hop index, path
digest, spatiotemporal
multi-key

Suitability
for INT

Poor Fully supports

supports status and statistics monitoring, as well as data source
integration with Prometheus [19] and Grafana [20].

B. Storage Layer

The core innovation of IntDB lies in its specialized spa-
tiotemporal data model designed specifically for INT, which
preserves the complete semantics of network paths while
supporting efficient spatiotemporal query operations. This
section details the design philosophy, specific structures, and
fundamental differences from traditional time series databases.

1) Fundamental Limitations of Traditional Time Series
Databases: We first analyze the fundamental deficiencies
of traditional time series databases when processing INT
data. Time series databases represented by InfluxDB adopt a
flattened data model that forcibly decomposes the multi-hop
path data of INT into independent scalar time series.

Consider the INT record in Listing 1. Traditional TSDBs
would store it as the flattened structure shown in Table III.
This storage approach leads to three critical problems: (1) Path
structure loss—the logical ordering and dependencies between
hops are destroyed; (2) End-to-end semantic absence—the
complete path characteristics of flows cannot be effectively
expressed; (3) Query complexity explosion—path reconstruc-
tion requires complex JOIN operations, causing dramatic per-
formance degradation.

TABLE III: Flattened storage of INT data in InfluxDB

Measurement Switch Timestamp Field Value
queue util s1 2025-04-21T10:00:00Z value 0.72
delay ns s1 2025-04-21T10:00:00Z value 600
queue util s2 2025-04-21T10:00:01Z value 0.64
... ... ... ... ...

2) IntDB: The fundamental challenge in INT data manage-
ment arises from the mismatch between the inherently path-
centric nature of telemetry flows and the scalar-oriented archi-
tecture of traditional TSDBs. While TSDBs excel at storing
and querying isolated metric streams, they fundamentally lack
the ability to preserve the spatial-temporal correlations and
structural dependencies that define network path semantics.



Consider an INT flow F that traverses a sequence
of switches P = ⟨s1, s2, ..., sn⟩. At each hop si,
the switch generates a telemetry measurement hi =
(timestampi, queuei, delayi) at time ti. In conventional TS-
DBs, this structured data is decomposed into disjoint time
series, effectively flattening the end-to-end path context into
fragmented, hop-level records. Reconstructing the original
path semantics requires expensive correlation operations that,
for a dataset containing k flows with average path length h,
may require O(k · h · log n) operations under typical B-tree
indexing schemes, where n represents the total number of
stored measurements.

The core technical challenge is to design a storage model
that preserves the structural relationship among the path (P ),
its constituent switches, and per-hop measurements (H), while
enabling efficient queries across temporal, spatial, and topo-
logical dimensions. This entails addressing three key subprob-
lems: (1) maintaining hop-level ordering within each flow
without excessive storage overhead; (2) supporting efficient
path-pattern queries, such as prefix and subpath matching; and
(3) enabling scalable spatiotemporal range queries over high-
volume telemetry datasets.

IntDB addresses these challenges through a unified data
model that treats flows as first-class entities while carefully
managing the storage-performance trade-off inherent in path
preservation. The model is formally defined as follows:

A INT flow F is represented as a 4-tuple (ID, P,H,M),
where:

• ID is a globally unique flow identifier.
• P = ⟨s1, s2, ..., sn⟩ represents the ordered sequence of

switches traversed by the flow.
• H = {h1, h2, ..., hn} denotes the set of hop-level teleme-

try records.
• M captures flow-level metadata including temporal

bounds and derived path characteristics.
Each hop record hi explicitly encodes the switch identifier,

measurement timestamp, and raw telemetry metrics. This
structure ensures that the original INT data from Listing 1
retains its complete path semantics during both storage and
query execution, enabling direct path-level operations without
reconstruction overhead.

In general, the core storage structure of IntDB can be
expressed as shown in Listing 2.

To address storage efficiency concerns, IntDB employs
several optimization strategies. Path templates are extracted
for frequently occurring switch sequences, allowing delta-
compression of similar flows. Additionally, hop-level aggre-
gation is performed during ingestion to reduce the storage
footprint of high-frequency telemetry streams while preserving
essential path characteristics.

The model incorporates optional spatial enhancement
through a metadata extension framework. In deployments
where network topology information is available, spatial coor-
dinates may be associated with switch identifiers as coordi =
(xi, yi, zonei). However, recognizing the deployment com-
plexity and maintenance overhead of comprehensive spatial

Listing 2: The Data Structure of IntDB
flow_id: "17343111536"
path: NetworkPath {

switches: ["s1", "s2", "s3"]
path_hash: "a1b2c3d4e5f6789..."

}
start_time: 2025-01-18T10:00:00Z
end_time: 2025-01-18T10:00:05Z
hops: [

{hop_index: 0, switch_id: "s1",
timestamp: "...", metrics: {...}}

{hop_index: 1, switch_id: "s2",
timestamp: "...", metrics: {...}}

{hop_index: 2, switch_id: "s3",
timestamp: "...", metrics: {...}}

]

mapping, this enhancement is designed as a progressive feature
that can be selectively enabled based on available infrastruc-
ture capabilities.

C. Query Layer

The query processing subsystem in IntDB is specifically
designed to exploit the path-aware data model for efficient
telemetry analysis. Unlike traditional TSDBs that rely on
expensive join operations to correlate related measurements,
IntDB’s query engine operates directly on preserved path
structures, enabling complex network analysis queries with
significantly reduced computational overhead.

IntDB supports complex queries that combine temporal,
spatial, and metric constraints through a unified QueryBuilder
interface. A typical INT analysis query involves multiple
condition types:

• Temporal conditions: Time range filters (e.g., last 24
hours), sliding windows.

• Spatial conditions: Path pattern matching (e.g.,
spine → leaf → server), switch-specific filtering
(e.g., flows traversing designated switches).

• Metric conditions: Performance thresholds (e.g., delay
> 500 ns), statistical constraints (e.g., queue utilization
> 90%).

Listing 3 is a query example in IntDB. The purpose of
this query is to find all high-latency telemetry flows that pass
through switch s2, have a path length between 3-5 hops, are
within the last 30 minutes, and have a total latency greater
than 1000 nanoseconds.

The query processor employs a cost-based optimization
strategy to determine the optimal execution order for multi-
dimensional filters, minimizing intermediate result set sizes.

The subsystem supports three primary types of path queries:
exact path matching, prefix/suffix matching, and regular
expression-based pattern matching.

(1) Exact Path Matching: For exact path queries, IntDB
utilizes flow ID or a hash-based path signature mechanism.
Each path P = ⟨s1, s2, ..., sn⟩ is mapped to a signature σ(P )
using the hash function.



Listing 3: A Query Example of IntDB
{
"time_conditions": [
{"type": "within_minutes", "value": {"

minutes": 30}}
],
"path_conditions": [
{"type": "through_switch", "value": {"

switch_id": "s2"}},
{"type": "length_range", "value": {"min"

: 3, "max": 5}}
],
"metric_conditions": [
{"type": "delay_gt", "value": {"

threshold": 1000}}
],
"limit": 100,
"include_flows": true

}

(2) Prefix/Suffix Matching: For path prefix and suffix
queries, IntDB maintains a radix tree (compressed trie) that
enables efficient prefix lookup in O(|prefix|) time, indepen-
dent of the total number of stored paths.

(3) Pattern Matching: For complex path patterns involving
wildcards and regular expressions, IntDB employs a finite state
automaton (FSA) approach. Path patterns are compiled into
FSAs, and path matching is performed through state transi-
tions, achieving O(|path| · |pattern|) worst-case complexity.

The path-preserving design introduces storage overhead
proportional to the path length, compared to flattened TSDB
storage. However, this overhead enables significant improve-
ments in query performance for path-oriented operations:

• Path reconstruction: O(log k+h) in IntDB vs. O(h log n)
in TSDB.

• Single-flow aggregation: O(h) linear scan in IntDB vs.
O(h log h)hop correlation and sorting in TSDB.

• Path pattern matching: O(log k+m) using path indexing
vs. O(k · h) exhaustive search, where m is the result set
size.

Here, h denotes the average path length, k is the number
of flows, and n is the total number of telemetry records.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We evaluated the performance of IntDB against InfluxDB on
a MacBook Air (2020, Apple M1, 8-core CPU, 16GB RAM)
under representative telemetry workloads. IntDB v0.2.0 and
InfluxDB v2.7.11 were deployed locally.

A. Write Performance

We evaluated the baseline responsiveness of both systems
using a lightweight HTTP stress test. The benchmarking test
tool is siege2 v4.1.7. The tested endpoints were the respective
health-check interfaces of each database.

2https://github.com/JoeDog/siege
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Fig. 2: The handling capability of Burst load.

Fig.2 evaluates the resilience of IntDB and InfluxDB to
burst load under varying load phases, including normal load,
burst, and recovery. While both databases experience a drop
in throughput during the burst phase, IntDB sustains a slightly
higher queries per second (QPS), especially during the re-
covery period. InfluxDB stabilizes more quickly in response
time after a burst, whereas IntDB requires a longer recovery
duration despite regaining high throughput. In conclusion,
InfluxDB demonstrates better real-time responsiveness and
burst load tolerance. IntDB excels in throughput recovery.

The results of concurrent scalability are shown in Fig.3.
IntDB consistently achieves higher throughput (QPS), making
it more suitable for scenarios with heavy data ingestion or high
transaction volume. However, InfluxDB demonstrates superior
latency characteristics, including lower average response times
and better control of peak latencies under high concurrency,
which is critical for latency-sensitive applications. In addition,
both databases maintained 100% availability and exhibited
negligible error rates in all tests, confirming their robustness
and stability under stress. While IntDB provides better raw
throughput, InfluxDB exhibits higher concurrency efficiency,
processing more requests per concurrent thread.

B. Query Performance

We employed an incremental load testing methodology with
three different concurrent query scales: 1K, 5K and 10K. And
each experiment involves two typical network telemetry query
patterns:

1) Path Pattern Matching Query: Finding all flows pass-
ing through specific switches.

2) Path Aggregation Query: Statistical aggregation of
network flows within specified time windows.

Figure 4 presents three core performance comparison re-
sults. Under path pattern matching, the average response time
of IntDB is improved by 87.7%. Under path aggregation, the
average response time of IntDB is improved by 82.4%.

V. CONCLUSION

In this paper, we presented IntDB, a spatiotemporal database
designed for in-band network telemetry. To the best of our
knowledge, this is the first work that studies in-band network
telemetry data storage. IntDB addresses the storage challenges
of INT through a path-oriented data model and query engine.
The storage and query of in-band network telemetry data is a
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Fig. 4: The result of query performance.

highly customized problem, and IntDB will continue to evolve
towards universality and efficiency in the future.
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