In-order INT: Efficient Reordering of Out-of-order

In-band Network Telemetry Packets via CPU-FPGA
Co-design

Zongrui Sui'?, Lizhuang Tan!?, Huiling Shi'?, Wei Zhang!*, Peiying Zhang!-
!Key Laboratory of Computing Power Network and Information Security, Ministry of Education
Shandong Computer Science Center (National Supercomputer Center in Jinan)
Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, China
2Shandong Provincial Key Laboratory of Computing Power Internet and Service Computing
Shandong Fundamental Research Center for Computer Science, Jinan, China
3Qingdao Institute of Software, College of Computer Science and Technology
China University of Petroleum (East China), Qingdao, China
Email: zongruisui2002 @gmail.com, 1zhtan@qlu.edu.cn, shihl@sdas.org, wzhang @sdas.org, zhangpeiying@upc.edu.cn

Abstract—With the emergence of Software-Defined Network-
ing (SDN) and data plane programmability, In-band Network
Telemetry (INT) has become a novel network measurement
approach, enabling end-to-end, hop-by-hop network visibility.
However, due to the complexity of network topologies and limita-
tions in telemetry orchestration schemes, telemetry servers often
encounter severe out-of-order issues when processing incoming
telemetry reports. This results in stale and unreliable data source
for upper-layer telemetry applications. This paper proposes a
CPU/FPGA co-designed out-of-order reordering system for INT,
which combines online and offline sorting techniques to enhance
the processing efficiency of telemetry servers. To the best of
our knowledge, this is the first study addressing out-of-order
reordering in INT. Experimental results show that compared to
a CPU-only solution, our approach achieves a 12.5X speedup on
the 10GE NIC.

Index Terms—Network Measurement, In-band Network
Telemetry, Heterogeneous Computing, Online Reordering, Of-
fline Reordering, Reordering Acceleration

I. INTRODUCTION

As an emerging network measurement technology, In-band
Network Telemetry (INT)[1] embeds telemetry instructions
and information into business traffic. It no longer uses a
separate control/management plane or out-of-band channel,
and can achieve end-to-end network status measurement. In
recent years, INT-based network routing[2], congestion con-
trol[3], and fault detection[4] have significantly improved the
efficiency of network control and management.

In-band Network Telemetry (INT) is a flow-level or path-
level measurement method. However, when it is applied to
network-wide measurement tasks, it faces a severe out-of-order

This work was supported in part by the Shandong Provincial Natu-
ral Science Foundation under Grant No. ZR2022LZHO015, ZR2023QF025,
ZR2023LZH017 and ZR2024MF066, the National Research Foundation of
Korea under Grant NRF-24109 FY2025, the National Natural Science Foun-
dation of China under Grant 62402257 and 62471493, the China University
Research Innovation Fund under Grant No.2023IT207, and the Talent Project
of Qilu University of Technology (Shandong Academy of Sciences) under
Grant No.2023RCKY141.

problem. Based on the task orchestration[5][6][7], telemetry
data is collected through multiple INT paths, which often
partially overlap. Even telemetry packets originating from the
same source flow may traverse different INT paths, resulting in
inconsistencies between the order of generation and the order
of arrival at the collector. If left unprocessed, such disorder
can compromise the accuracy of temporal analysis for upper-
layer applications. Therefore, reordering telemetry data at the
collector side is essential to ensure data integrity and temporal
correctness.

With the advancement of heterogeneous computing, CPU
and Field Programmable Gate Array (FPGA) based heteroge-
neous architectures have been widely adopted for accelerating
a variety of applications[8][9]. FPGA-based acceleration ap-
proaches leverage its highly parallel processing capability and
pipelined architecture[10], while also offering lower power
consumption[11]. From the perspective of accelerating the
reordering process in In-band Network Telemetry (INT), the
introduction of FPGA significantly enhances the reordering
efficiency of the telemetry server, and releases more CPU
computational resources for INT applications.

In this paper, the disordering of In-band Network Telemetry
data is discussed, and we propose an INT (In-band Network
Telemetry) processing scheme to accelerate the process of
reordering, which enables both data and task parallelism.
The scheme employs the optimized online reordering archi-
tecture, which reduces CPU computational resources, saves
comparator resources compared with traditional architecture,
and meets the requirements of real-time telemetry applications.
On the basis of online reordering, we also propose an offline
reordering architecture, which reduces the time required for
offline reordering. Our main contributions are:

e We analyze the task orchestration of the In-band Net-

work Telemetry during the telemetry phase and find that
the out-of-order issue of INT is ignored. Therefore, a
CPU-FPGA collaborative method for reordering In-band

0o)
=] =]
2,) .
Delay Ims Delay = 2ms /&, .=} ™ Useré.
INT Source INT Transit #1 sf = .=
2 Delay = 2ms

AN s
%N =
2 \tﬁ INT Transit #3
S z\w‘i S A\
%,

lNT Smk
&l
User-2 INT Transit #2
TTegend 7T ‘
| — Telemetry Path #1 = INT Packet #1 | Telemetry Server
|~ Telometry Path#2_51 INT Packet 2
Fig. 1: In-band Network Telemetry

Network Telemetry packets is proposed.

e In this paper, we utilize the FPGA accelerator card to
accelerate the reordering of INT packets, which improves
the efficiency of reordering and reduces the utilization of
CPU resources.

e The proposed method combines online and offline re-
ordering for INT packets, and timely delivers ordered
telemetry data to applications, thereby satisfying the real-
time requirements of upper-layer telemetry applications.

e For multi-flow reordering, we propose an online re-
ordering architecture based on time-multiplexing, which
reduces the comparator resources by half.

The rest of this paper is organized as follows. Section 2
provides background. Section 3 describes the system design
of in-order INT for CPU and FPGA architectures. Section 4
describes the details of the implementation of online reorder-
ing and offline reordering. The results of the experiment are
discussed in Section 5. Finally, section 6 summarizes the total

paper.

II. BACKGROUND

A. In-band Network Telemetry

Different from traditional network measurement, In-band
Network Telemetry combines packet forwarding with network
measurement, allowing network devices (routers and switches)
to insert device status information into packets during the
transmission of service packets, which is is used to collect
per-packet information in real time from end to end. Con-
sequently, In-band Network Telemetry greatly improves the
real-time visibility of the network and facilitates more efficient
network diagnostics. In the INT architecture, the controller is
responsible for orchestrating telemetry tasks, including select-
ing which network paths require monitoring, specifying the
telemetry metadata to be collected (such as latency, congestion,
and packet loss), and defining strategies such as sampling
frequency. These tasks are then delivered to the corresponding
INT Sources. The INT Source embeds telemetry instructions
into data packets. INT Transit nodes insert telemetry data
according to the embedded instructions, and the INT Sink
receives the final packets carrying the collected telemetry
information.

B. Out-of-order Issue of INT

In the following, we analysis the out-of-order issue of INT.
Suppose that the In-band Network Telemetry server issues
a telemetry command at 0 ms, and a set of telemetry path
is formed according to the orchestration of task, that is,
Telemetry Path 1 and Telemetry Path 2 are shown in Fig. 1.
There is an overlap between Path 1 and Path 2 (INT Source,
INT Transit #3, INT Sink). The 1st INT packet arrives at INT
Source at 1 ms, and INT Source uploads its device status
information with a timestamp of 1 ms. INT packet #2 arrives
at INT Source at 2 ms, and INT Source does the same with
it. When the two INT packets pass all the network devices on
the telemetry path, the network devices do the above on them.
Finally, INT packet #1 and INT packet #2 arrive at the INT
Sink, which hands over the service packet-related information
to User-3 and the In-band Network Telemetry data to the
telemetry server. When the In-band Network Telemetry server
processes the telemetry data, it will put the status information
of different devices into the corresponding time series database
based on the device ID number, and INT packet #2 will arrive
at INT Sink earlier than INT packet #1 according to the link
delay calculation. For the telemetry data of the INT Source of
the device, the order of arrival to the telemetry server is [(2
ms, INT metadata 1), (1 ms, INT metadata 2)] (the time series
database used is stored in ascending order of timestamps by
default), so the INT out-of-order problem occurs, and a system
needs to be designed to reorder the telemetry data.

III. ARCHITECTURE DESIGN OF IN-ORDER INT

Fig. 2 shows the block diagram of CPU/FPGA collabora-
tion. The architecture of the proposed method is composed of
host and FPGA. The host runs host program and telemetry
application program. The host program schedules the reorder-
ing unit and manages data transfers between CPU and FPGA,
and the application program utilizes telemetry data to perform
relevant network functions that are depicted in Fig. 2.

The INT packet includes telemetry data from different net-
work devices in multiple telemetry paths. The packet classifier
in FPGA splits the coming INT and classifies the telemetry
data into corresponding BRAM according to device-id. The
multiple online reordering units in FPGA has been deployed,
and all of them can run in parallel. Multiple online reordering
units can correspond to reorder multiple telemetry data flows
received in the In-band Network Telemetry. It should be noted
that one online reordering unit is responsible for reordering by
timestamp of telemetry data from only one network device.

The total BRAM is partitioned into read BRAM and write
BRAM. The read BRAM functions as buffer for telemetry data
awaiting reordering, and the online and offline reordering units
access the read BRAM to load telemetry data to be sorted.
Once reordering is complete, the telemetry data is written
in the write BRAM, where it is temporarily buffered before
being transferred to DDR4 and eventually returned to the host
memory of host.

] Disordering INT

TABLE I: Description of Parameters

AV FPGA :«Disordered}
Packet Classifier ! data |
| Partially !
_____________________ |
[: r Oonli : r o : :<:(I)rdered data:
| nline nline R mne |
I'| Reordering | | Reordering | | | 1| Reordering : ,<::| Ordered !
I I I 1 1! data
: - I R
1 : : BRAM | : | BRAM | :
I____I |____| |____|—|____| I__%__I
~ ~/
| DDR4 |
I 1
U —
Host | HostMemory || _ Telemetry Applications _
: Thread 1 : {} {} : Thread 2 : : Thread 3 :
I Host)’I‘ inﬂuxd bIZ:> : INT H Traffic |
| Program | W E=)) | Monitoring || Engineering

Fig. 2: The block diagram of collaboration

IV. REORDERING METHOD AND IMPLEMENTATION
DETAILS

A. Online and Offline Reordering

Our reordering work includes online reordering and offline
reordering, online reordering refers to reordering during the
process of receiving telemetry data packets, the reordering
results are uploaded in real time, and offline reordering is
reordering after all the data arrive. For upper-layer real-time
telemetry applications, excessive latency cannot be tolerated,
and real-time monitoring and diagnosis of network perfor-
mance are required. Traffic engineering is a typical real-
time telemetry application that continuously monitors network
traffic, identifies bottlenecks and traffic imbalances, and redis-
tributes traffic or adjusts paths accordingly, which demands the
telemetry server provides real-time telemetry data for analysis.
Thus, the telemetry server needs to perform online reordering
of the telemetry data and promptly delivers the reordered data
to the upper-layer real-time telemetry applications. And when
all the telemetry data arrive, offline reordering is applied to
reorder all the telemetry data.

B. Online Reordering Architecture

To address packet reordering in networks, Hoang et al.[12]
designed a sorting pipeline based on insertion reordering.
However, the limitation of proposed multiple flows implement
is that the resource utilization of FPGA is very high. In
order to reduce the resource utilization on FPGA, we propose
a parallel insertion sequencer architecture based on time-
multiplexed comparator, which reduces the comparator by
half compared with the traditional parallel insertion reordering
architecture.The traditional architecture is N registers cor-
responding to N comparators. Because INT collects status
information from multiple devices in the network, reordering
INT involves the multi-flow approach, which allocates the
telemetry data from multiple sources to the different sorting

Parameter Description

T Total number of telemetry packets in unit ¢
P, Insertion position in unit ¢

Ejj Element in the j-th shift register of unit 4
A; Element to be sorted in arriving packet ¢

R; Comparator result of comparing A; with £

unit, achieving higher throughput[13].It is important to note
that when there are M flows in the INT, M reordering units
are required, and the total number of comparators required
C’original is

C’original =N x M. (D

Online reordering involves multi-flow reordering, and the
method we propose allows two online reordering units to time-
multiplex a shared set of comparators. In Fig. 3 the online
reordering architecture for the reordering unit with a sorting
window W = 16 is shown, which is also called the total number
of available shift registers. The shown reordering units can
run in parallel. To facilitate the explanation of the improved
online reordering architecture we propose, we first explain the
implement rules of single reordering unit. We take reordering
unit 1 as an example in Fig. 3. The parameters necessary for
the explanation of the method are listed in Tab. I. The insertion
sorting process can be divided into the determination of the
insertion position and the movement of the element followed
by the insertion process. Determining the insertion position
is a key step in the insertion reordering process. When the
telemetry packet in the network arrives at the reordering unit’s
arriving packet-1, the timestamp in the telemetry packet will be
compared simultaneously with the timestamps of all packets in
the reordering unit 1. The rules for determining the insertion
position P; are as follows.

1) If A; > Ejj, the output of the comparator is 0, else the
output is 1.

2) If [Rll,. .. ,le] = [O, .. ,0] and [Rl(k+1)»~ .. ,Rl Tl] =
[1,...,1], the insertion position P; = k.

3) When [R;,Ri2,....Ri1y] = [0,0,...,0], the insertion
position P, =T} + 1.

4) When [Ri1,Ri2,....Ri7,] = [1,1,...,1], the insertion
position P} = 1.

According to the rules mentioned, the insertion position
could be determined. And since the comparator works in
parallel, the insertion position P, is determined in one cycle.
Then for P, < j < T, the E; simultaneously completes the
right shift followed by the A; to be inserted into P; in one
cycle. As described in rule 4 above, when the insertion position
is T + 1, shifting is not required. Nevertheless, the insertion
operation is still scheduled within a cycle. Therefore, a single-
insertion reordering can be completed in only two cycles.
In the following, we discuss how the two reordering units
time-multiplex a set of comparators. We mention that when
the reordering unit 1 is performing right shifts followed, the

(
|
I
I
|

Arriving

\ Packet-2

(" Arriving |
: Packet-1
I
I
I

e

Fig. 3: The improved parallel insertion reordering framework

_________________ ||______________|
|:|:||:| C i
|

| Arriving 0] 2 3 15

Imxﬂii:% %H : = :

I I Shift
| |

: I I | P { I |: Arriving o

(Uit o 12 3 _is y_ _Packe2 Unit2]

Cycle 1

- ——————————= | —————————————————

N N | |

0 1 3 15

=o%ob :

Fig. 4: The process of inserting reordering

comparators are in an idle cycle, which can be fully utilized
by the reordering unit 2. The two reordering units in Fig. 3
respectively sort telemetry data from different network devices
in the INT path, and the arriving packet unit stores earliest
arriving telemetry data in the flow. Assume that the telemetry
packet buffer queues of reordering unit 1 and unit 2 are [(10,
data), (8, data)] and [(4, data), (6, data)], respectively. There-
fore, A; and A, should respectively be (10, data) and (6, data).
And in the previous cycle, unit 1 completed the element(9,
data) insertion, while unit 2 completed the comparison. The
following process is shown in Fig. 4. In cycle 1, the timestamp
of the A; is compared with the timestamps of all the elements
in the reordering unit 1, and [R;1,R2,R 3] = [0,0,1], thus the
insertion position P is 3. At the same time, the right-shifting
operation is completed followed by inserting element (4, data)
in unit 2. In cycle 2, the shift is completed followed by the
element (10, data) to be inserted. In cycle 2, the timestamp
of A, is compared with the timestamps of all the elements
in reordering unit 2, and [Ry;,R»,R23] = [0,1,1], thus the
insertion position is 2.

C. Offline Reordering Architecture

Offline Reordering is a solution to reorder large-scale
telemetry data for telemetry applications. Pattern mining as

/1,
Input é’/ :
Manager \\\ .

Fig. 5: The schematic diagram of offline reordering

a typical telemetry application, is a effective approach for
monitoring network conditions[14]. Moreover, pattern mining
on telemetry data enables the identification of recurrent con-
gestion paths and anomalous device behaviors in the network.
In this subsection, we discuss the architecture of offline
reordering as well as the associated data transmission process.

After online reordering, the partially ordered telemetry data
are ultimately stored in the time-series database. Merge sort
is particularly effective when applied to partially ordered data,
as it can efficiently merge sort sub-sequences into a globally
ordered sequence.Recent research has proposed a variety of
merge accelerators on FPGA[15]. In 2016, Wei Song et al.
proposed the Parallel Merge Tree (PMT)[16] based on exist-
ing sorters, significantly improving performance compared to
sequential sorters. Additionally, Philippos Papaphilippou et al.
designed a Fast Lightweight Merge Sorter (FLiMS)[17] and
introduced a new parallel architecture. By utilizing only half
of the hardware resources, this architecture achieved superior
FPGA performance, with lower resource utilization allowing
for higher throughput. Thus the method we propose adopts
FLiMS as the merge sorter in the parallel offline reordering
architecture.

The architecture of offline reordering is shown based on
FPGA in Fig. 5. To facilitate the explanation of the operational
mechanism of the Input Manager, we treat every 32 telemetry
data as a data block. After online sorting, the data within a
block is ordered. However, the telemetry data across multiple
blocks may be unordered. The Input Manager streams the
telemetry data from a single data block into one FIFO, with
the telemetry data from eight data blocks being streamed into
eight separate FIFO.The process of data movement will be
explained in the fourth paragraph of this subsection. FLiMS, as
the merge sorter in this parallel reordering architecture, merges
the telemetry data from two sorted lists into a single sorted
queue. The implementation rules of FLiMS are as followed.

1) All FLiMS in Fig. 5 can run in parallel, provided they
follow rules 2 and 3.
2) FLiMS stops functioning when any FIFO in two corre-
sponding input FIFOs is empty.
3) FLiMS suspends if its output FIFO is full.
In the following, we describe the process of data trans-
fer.Initially, the host transfers the data to be sorted into the

FPGA’s DDR4 through Direct Memory Access (DMA) pro-
cess in Fig. 2. Subsequently, the Input Manager transfers the
data from DDR4 to the on-chip buffers (FIFOS) in bursts[18].

V. EVALUATION

In this section, we begin by presenting the details of our
experimental setup. Then, We discuss the impact of different
reordering window size in online sorting on the improvement
of disorder and the effect on delivery latency. Finally, we
discuss the performance of the overall reordering and its
speedup ratio compared to the performance of reordering by
using CPU.

A. Experimental Setup

Our system uses the Xilinx VU37P FPGA, equipped with
32 GB of DDR4 memory (split into 2 channels) and 10 Gbps
Ethernet ports. The CPU used in the experiment is Intel Xeon
Gold 5318Y in host. The INT is encapsulated in UDP, and the
telemetry packet size is 32 B.

B. Latency and improvement of disorder of a single online
reordering unit

To facilitate the description of the disorder level of a
sequence, we define the disorder level D. Inversion count C'
and inversion distance sum S can collectively measure the
disorder level of a sequence, with different weights assigned to
their contributions. For a given sequence a = [a1, as, .. .,an],
where each inversion pair (a,, a;) satisfies ¢ < j and a; > qaj,
we can define the inversion distance sum S as the total sum
of the distances of all inversion pairs is

N N
S=>">" 1(ai>a;)- (j—i),)

i=1 j=i+1

where 1(a; > a;) is an indicator function, which takes the
value of 1 when a; > a;, indicating the existence of a
inversion pair for that element. The j — ¢ is the distance
between the inversion pair. And Ch,x and Sp,x represent the
maximum Inversion Count and maximum Inversion Distance
Sum of a sequence with size NV, respectively. We can get:

1 N(N -1
Smaz = NN = (N + 1), Cas = % 3)
The disorder level D is
C S
D = <D<1 4
O S EP S @

In equation (4), o and f3 respectively represent the weights
of the Inversion Count and Inversion Distance Sum. N rep-
resents the size of the sequence. The condition that o and 3
must satisfy is shown:

a+p=1, 5)

where « and 3 represent the weights of the Inversion Count
and Inversion Distance Sum in their influence on D.

To evaluate the impact of different reordering window sizes
W on disorder improvement and delivery latency during the

| — Commit Latency!
l == Disorder Level |
o4 S TTTTTmTmmTmTET T 800
0.35 1600
Q03 1400 2
—_— >
2025 1200 2
1000 =
= 02 =
2, 800 2
—
5015 600 é
5 0.1)
400 O
0.05 . 200
0 0
8 16 32 64 128

Fig. 6: The impact of different sorting window sizes on
disorder improvement and delivery latency

online reordering phase, the described FPGA was used to
receive 1024 INT packets containing telemetry information
from a specific device. The experimental results are shown in
the Fig. 6. In this experiment, the values of « and S are set to
0.5 and 0.5. The experimental results indicate that when the re-
ordering window size W varies within a range of small values,
increasing the window size does not significantly improve the
disorder improvement, while delivery latency almost increases
exponentially. When a larger sorting window is chosen, the
improvement in disorder is very significant, especially when
the window size is set to 128, where the disorder level is nearly
eliminated, although the delivery latency is also very high,
reaching 1590 ns. Therefore, the choice of reordering window
size W should be selected based on the real-time application’s
requirements for disorder improvement and delivery latency.

C. Reordering performance

In this experiment, we evaluate the overall reordering per-
formance. We monitor the network performance of a network
device in the telemetry path and reorder its telemetry data
of 2 MB, 8§ MB, 16 MB, 32 MB, 64 MB, 128 MB, 256
MB and 512 MB. The total reordering time is the sum of
the online reordering time and the offline reordering time.
Similarly, we perform both online reordering and offline re-
ordering on the CPU for the above data. The online reordering
uses the insertion sort algorithm, while the offline reordering
uses std::sort(). The GCC C++ Standard Library’s std::sort()
is considered a widely available and excellent baseline for
evaluating high-performance sorting in software. Finally, we
calculate the speedup corresponding to different data sizes.

The experimental results are shown in Fig. 7.The results
show that when the size of the data gradually increases, our
acceleration performance gradually improves. When the data
size is 32MB, the acceleration ratio is 7.4, whereas when the
data size reaches 512MB, the acceleration ratio can reach 12.5.
In conclution, the data size is relatively large, the acceleration
effect of our proposed CPU/FPGA-based reordering method
becomes more efficient.

124

114

10+

Speedup
O

2MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB
Fig. 7: The speedup of FPGA over CPU for different data
sizes

VI. CONCLUSION

In this paper, we propose a method based on a CPU-FPGA
heterogeneous platform to accelerate reordering for INT. This
method combines online reordering with offline reordering,
meeting the real-time requirements of telemetry applications.
Our experimental results prove that the proposed method can
accelerate the entire reordering process of telemetry data.
In the future, more efficient reordering algorithms and more
adequate hardware resource utilization are important research
directions for improving the performance of In-band Network
Telemetry out-of-order reordering.

REFERENCES

[1] L. Tan, W. Su, W. Zhang, et al., “In-band Network
Telemetry: A Survey,” Computer Networks, vol. 186,
p. 107763, 2021.

[2] W. Gao, J. Huang, N. Jiang, et al., “HPLB: High preci-
sion load balancing based on in-band network telemetry
in data center networks,” Peer-to-Peer Networking and
Applications, vol. 15, no. 6, pp. 2503-2515, 2022.

[3] Y. Li, R. Miao, H. H. Liu, et al., “HPCC: High precision
congestion control,” in SIGCOMM’19, ACM, 2019,
pp. 44-58.

[4] K. Zhang, W. Su, H. Shi, K. Zhang, and W. Zhang,
“Grayint—detection and localization of gray failures via
hybrid in-band network telemetry,” in APNOMS’23,
IEEE, 2023, pp. 405-408.

[5] R. Hohemberger, A. G. Castro, F. G. Vogt, et al.,
“Orchestrating In-Band Data Plane Telemetry With Ma-
chine Learning,” IEEE Communications Letters, vol. 23,
no. 12, pp. 2247-2251, 2019.

[6] Z.Zhang, W. Su, and L. Tan, “In-band network teleme-
try task orchestration based on multi-objective optimiza-
tion,” in APNOMS’21, 1EEE, 2021, pp. 354-357.

(7]

(8]

(9]

[10]

[14]

T. Ouyang, H. Yao, W. He, T. Mai, F. Wang, and F. R.
Yu, “Self-adaptive dynamic in-band network teleme-
try orchestration for balancing accuracy and stability,”
IEEE Transactions on Network and Service Manage-
ment, 2025.

Y.-K. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman,
and P. Wei, “In-depth Analysis on Microarchitectures of
Modern Heterogeneous CPU-FPGA Platforms,” ACM
Transactions on Reconfigurable Technology and Sys-
tems, vol. 12, no. 1, pp. 1-20, 2019.

M. Huang, A. Shen, K. Li, et al., “EdgeLLM: A Highly
Efficient CPU-FPGA Heterogeneous Edge Accelerator
for Large Language Models,” IEEE Transactions on
Circuits and Systems I: Regular Papers, pp. 1-14, 2025.
M. Kalemati, A. D. Nayeri, and S. Koohi, “Pip-
SW: Pipeline Architectures for Accelerating Smith-
Waterman Algorithm on FPGA Platforms,” IEEE Trans-
actions on Emerging Topics in Computing, pp. 1-12,
2024.

M. S. Alam, U. Khan, M. Hasan, and O. Farooq,
“Energy Efficient FPGA Implementation of an Epileptic
Seizure Detection System using a QDA Classifier,”
Expert Systems with Applications, vol. 249, p. 123755,
2024.

V. Q. Hoang and Y. Chen, “Cost-effective Network
Reordering using FPGA,” Sensors, vol. 23, no. 2, p. 819,
2023.

Y. Thomas, G. Xylomenos, C. Tsilopoulos, and G. C.
Polyzos, “Multi-flow Congestion Control with Net-
work Assistance,” in NETWORKING’16, 1EEE, 2016,
pp. 440-448.

P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S.
Koh, and R. Thomas, “A survey of Sequential Pattern
Mining,” Data Science and Pattern Recognition, vol. 1,
no. 1, pp. 54-77, 2017.

P. Papaphilippou, C. Brooks, and W. Luk, “An Adapt-
able High-throughput FPGA Merge Sorter for Accel-
erating Database Analytics,” in FPL’20, 1EEE, 2020,
pp. 65-72.

W. Song, D. Koch, M. Lujin, and J. Garside, “Parallel
Hardware Merge Sorter,” in FCCM’16, 2016, pp. 95—
102.

P. Papaphilippou, C. Brooks, and W. Luk, “FLiMS: Fast
Lightweight Merge Sorter,” in FPT’18, IEEE, 2018,
pp. 78-85.

C. Ferry, T. Yuki, S. Derrien, and S. Rajopadhye, “In-
creasing FPGA Accelerators Memory Bandwidth With
a Burst-Friendly Memory Layout,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, vol. 42, no. 5, pp. 1546-1559, 2023.

