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Abstract—FPGA-based SmartNICs are increasingly deployed
in cloud and edge data centers to offload cryptography, packet
shaping and in-network computing. While recent virtualisation
techniques (e.g., SR-IOV) allow multiple tenants to share a single
FPGA accelerator, each tenant receives a fixed portion of logic
resources and must load a private copy of every required network
function. How to improve the resource utilization of FPGA
accelerators, meet the stringent service quality constraints of
multi-tenants, and provide resource sharing fairness are the main
goals of FPGA network function acceleration. We present FPGA-
SDM, a virtualized FPGA resource sharing method based on
space division multiplexing. In FPGA-SDM, each tenant is issued
a private VFPGA domain realised through SR-IOV queues and
DMA engines, while a reconfigurable public service pool hosts
the library of packet-processing acceleration function that are
loaded on demand via partial reconfiguration.Our moduel show
that, under tenant activity levels of 0.3-0.6 and sharing ratios
of 0.4-0.7, the system achieves up to 1.5x performance improve-
ment over static resource allocation. Moreover, the experimental
results confirm that FPGA-SDM achieves line-rate throughput,
maintains near-optimal throughput levels under the influence of
malicious tenants, and improves average resource utilization up
to 49.5%.

Index Terms—Field-Programmable Gate Array, Partial Recon-
figuration, Single Root I/O Virtualization, Peripheral Component
Interconnect Express.

I. INTRODUCTION

Field-Programmable Gate Array (FPGA) has evolved from
application-specific accelerators into first-class citizens of
modern data-center networks, where they appear as SmartNICs
that can offload cryptography, switching and storage functions
at line rate [1]. Cloud service providers now seek to expose
these capabilities to multiple tenants simultaneously, however,
the prevailing slice-based approach—statically carving a de-
vice into fixed partitions—struggles to meet the elasticity,
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fairness and security requirements of multi-tenant deployments
[2]. In multi-tenant environments, FPGA virtualization is chal-
lenged by.

1) Elastic allocation vs. Static allocation. When each
tenant is hard-bound to a predetermined share (e.g., 10 %
LUTs and 1Gbps bandwidth), bursts above that quota
trigger throttling even if idle resources exist elsewhere,
while long idle periods waste silicon [3].

2) Redundant instantiation. Tenants loading some copies
of the same network function (e.g. AES) dramatically
inflate LUT/BRAM usage and configuration latency.

3) Fairness under adversarial demand. Malicious or
mis-configured tenants can oversubscribe PCle and
on-board DRAM, degrading the tail latency of
well-behaved users unless hardware policing is present
[4].

To overcome these obstacles, we propose FPGA-SDM,
a virtualized FPGA resource sharing method based on
space division multiplexing. FPGA-SDM treats accelerators
as micro-services and introduces two key abstractions.

e A private vFPGA domain per tenant, created with
SR-IOV over PCle, guaranteeing hardware isolation of
queues and DMA flows.

o A reconfigurable public service pool that hosts a li-
brary of reusable packet-processing functions (e.g. en-
cryption, firewall, and parsing). Modules are loaded and
unloaded at run time via Partial Reconfiguration(PR)
within sub-millisecond latency [4].

A hardware monitor combines a sliding-window counter
with a token-bucket rate limiter: it detects sustained over-
subscription, throttles abusive flows, or isolates the culprit
preserving fairness under contention or attack.

Compared with prior SmartNIC virtualisation efforts such
as SuperNIC [5] and FFIVE [6], FPGA-SDM makes the
following contributions.

« Elastic multiplexing. Resources migrate on demand be-

tween tenants, boosting average utilisation by up to 50%
without violating service-level agreements.



« Function-level sharing. A single hardware instance of a
network function is transparently reused by many tenants,
eliminating redundant LUT/BRAM footprints.

o Hardware fairness enforcement. The proposed
sliding-window + token-bucket monitor maintains near-
optimal throughput levels under the impact of malicious
tenants.

o Prototype and evaluation. An end-to-end implemen-
tation on a Xilinx Alveo U50 shows that, under 50
concurrent tenants, FPGA-SDM preserves over 95 Gbps
aggregate throughput.

The remainder of this paper is structured as follows. Section
2 surveys related work. Section 3 details the FPGA-SDM
architecture and implementation. Section 4 presents simulation
and hardware evaluation results. Section 5 concludes and
outlines future work.

II. RELATED WORK

At present, there are various solutions in the field of network
function virtualization for FPGA.

SuperNIC maps network tasks to physical chains through
PR, providing a multi-tenant SmartNIC, but lacks efficient I/O
virtualization. FPGA virtualization technology uses SR-IOV
to divide a single FPGA into multiple virtual function (VF)
to achieve multi-tenant sharing. FPGAVirt leverages Virtio to
implement an efficient communication scheme between virtual
machines and the FPGA. However, a fixed resource allocation
model is difficult to cope with fluctuations in user demand
and is prone to resource idle or bottleneck issues [7]. Like
Nimblock [8], managing virtualization resources within a sin-
gle FPGA, creating isolated and secure environments for each
tenant, with each tenant having their own dedicated resources.
FFIVE utilizes Kubernetes to deploy virtual connections based
on FPGA, enabling FPGA migration in virtual networks as
needed.

Partial Reconfiguration (PR) technology [9], allows for on-
demand loading of specific functional modules at runtime, im-
proving hardware flexibility, but existing solutions are mostly
static deployments and lack efficient dynamic scheduling
mechanisms. HiPR [10] allows developers to define partially
reconfigurable C/C++ functions as an open-source framework,
which facilitates incremental compilation of FPGA. PR-ESP
[11] is an open-source platform for a system-level design
flow of partially reconfigurable FPGA-based SoC architectures
targeting embedded applications that are deployed on resource-
constrained FPGAs. S-NIC [12] pervasively virtualizes hard-
ware accelerators, enforces single-owner semantics for each
line in on-NIC cache and RAM, and provides dedicated bus
bandwidth for each network function.

Network function sharing and malicious detection [13],
traditional software scheduling sharing strategies are difficult
to achieve precise isolation at the hardware level, and lack
timely restrictive measures for malicious user competition.
LemonNFV [14] is a novel NFV framework that can con-
solidate heterogeneous NFs without code modification.

In contrast, the FPGA-SDM solution proposed in this paper
combines virtualization, partial reconfiguration, shared reuse,
and dynamic scheduling mechanisms at the hardware level, ef-
fectively addressing the shortcomings of existing technologies
in multi-tenant network function reuse, resource management,
and malicious detection.

III. SYSTEM ARCHITECTURE

The system architecture of this paper mainly includes three
modules, as shown in the Fig. 1, private user resource area:
allocating independent virtual function (VF) [15] to each user
through the SR-IOV technology on the FPGA network card,
each VF has an independent sending and receiving queue and
bandwidth limit, achieving hardware level isolation; Public
network service resource area: preloading or dynamically
loading general network function modules (such as AES
encryption and decryption, data compression, firewall, etc.) as
needed, shared by multiple VFs, using pipeline and priority
scheduling mechanisms to improve resource utilization; Re-
source Control Center: located on the Physical Function (PF)
[16] of the FPGA network card, responsible for maintaining
the Hardware Match Table, conducting dynamic resource
allocation, scheduling decisions, and malicious user detection,
and implementing traffic control through token buckets and
sliding window mechanisms.

A. Hardware Design

FPGA-SDM targets network-acceleration workloads around
four key components, an SR-IOV PCle interface, a PCle DMA
controller [17], a packet switch, and a cluster of Network
Function accelerators.

e SR-IOV PCle. SR-IOV is used to enable virtualization
on the FPGA, partitioning it into one physical function
(PF) and multiple virtual functions (VFs). VF not only
includes independent VFPGA accelerators to provide to
different tenants to meet different needs, but also multiple
VF shared functional resource areas. Our framework has
shown four VFs corresponding to four different tenants.
Tenants can apply for network function acceleration to
the public network service component by sending data
packets. SR-IOV PCle uses transaction layer packets to
describe the functions, which can achieve more user
traffic direct memory access.

e PCle DMA Controller. Determine whether to forward
the tenant’s data packet through the transaction layer,
based on the packet descriptor field, and can manage
the interaction between FPGA and host through pipeline
to efficiently distribute multi-tenant data packets with-
out additional loss. The load balancer retrieves from
the function matching table according to the functional
requirements of the data packet. If the task is completed,
the data packet is developed to the corresponding vFPGA
accelerator for data packet conversion and allocation.
Otherwise, the data packet will be blocked or forwarded
to Ethernet.
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Fig. 1. The hardware of FPGA-SDM framework.

o Packet Switch. It can transmit data packets to the corre-
sponding VFPGA accelerator, and the Ethernet subsystem
supports network access and is embedded in a Layer
2 switch. It allocates rules for other PF based on the
destination MAC address of the incoming data packet. It
is used to perform control plane tasks and can centrally
manage and control FPGA resources.

o Hardware Accelerator. RISC-V [18] can run in the form
of a soft-core on FPGA, offering high flexibility and cus-
tomizable instruction sets. In a multi-tenant environment,
FPGAs need to be dynamically allocated to different
users while ensuring isolation and performance. RISC-
V’s virtualization technology can be used to load different
bitstreams into the FPGA sections corresponding to each
tenant, and it can ensure that different FPGA accelerators
cannot access beyond their boundaries.

B. Software Design

The FPGA-SDM complements the hardware datapath with
two software-defined partial reconfigurable public functions
and tenant-aware resource management that jointly deliver
elasticity, isolation, and real-time mitigation of abusive work-
loads.

o Reconfigurable Public Service Pool. In FPGA, resource
sharing and reuse represent prevalent resource optimiza-
tion strategies, primarily categorized into time multi-
plexing and space multiplexing. In this context, spatial
multiplexing is employed to partition a segment of FPGA
hardware resources as a shared public resource domain
among multiple tenants. Within this domain, the resources
are further divided into multiple independent functional
regions, each capable of operating autonomously. In
particular, each partition can load distinct network ac-

celeration bitstreams and be invoked by heterogeneous
hardware accelerators to implement diverse network ac-
celeration functionalities.

Additionally, this shared domain is designated as a dy-
namically partial reconfigurable region. Each PR partition
within this region exclusively occupies dedicated Block
Random Access Memory (BRAM) [19] and logic re-
sources, thereby eliminating contention risks. Hardware
accelerators are directly routed to specified PR region
in real time, aligning with tenant-specific acceleration
demands.

User Management. In order to realize dynamic function
sharing and resource scheduling in the above system,
this paper implements partial reconfiguration and shared
scheduling algorithms in hardware, shown in Algorithm
1. The main algorithms include: parsing the TLP descrip-
tor of the data packet, extracting the user ID, function
ID and priority information from it, using the symmetric
hash algorithm to determine the queue to which the data
packet belongs, and deciding whether to call the existing
public function module or trigger partial reconfiguration
to load a new module based on the matching table.
Malicious user detection algorithm, the sliding window
countingand token bucket mechanism are used to monitor
the request rate of each user in real time. If the preset
threshold is exceeded in multiple consecutive windows,
the token generation rate of the user is dynamically re-
duced or its request is transferred to a low-priority queue,
and its resources are directly isolated if necessary. In
addition, this paper also provides a hardware acceleration
solution based on the AES encryption and decryption
module and the RSA authentication module implemented
on the FPGA network card to reduce the pressure of
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network encryption operations on the host CPU and
support high-speed processing of security protocols such
as QUIC.

C. Service Function Chain

In the data reception pipeline illustrated in Fig. 2, data from
multiple tenants is first transferred to the FPGA via the PCle
interface. It is then buffered in the RX module, which acts as a
staging area for subsequent processing stages. Next, the cached
data stream enters the RX Pipeline, serving as the vFPGA
acceleration unit, where the hardware acceleration capabilities
of the FPGA are utilized to perform targeted processing on the
data, thereby enhancing the processing efficiency. During this
process, based on processing requirements, metadata requests
are sent to the work queue cache, address mapping table
cache, infiniBand connection manager cache, and the obtained
metadata is returned to the Network Function module to
assist with processing. Finally, the data enters the Network
Function module for subsequent processing operations related
to network functions.

As shown in Fig. 2, once the data is processed by the
Network Function module, it is forwarded to the TX pipeline.
This stage serves as the VFPGA acceleration unit, performing
pre-transmission optimization to enable efficient data delivery.
Then, the data that has undergone acceleration processing
flows into the TX Buffer for caching, ensuring that the data is
arranged in an orderly manner before being sent to the tenants
and preventing transmission congestion. Finally, the processed
data is accurately sent back to the corresponding Tenant N via
the PCle interface, completing the entire data processing and
transmission process.

IV. SIMULATION AND EXPERIMENTAL EVALUATION

To quantitatively assess the performance benefits of our
proposed FPGA-SDM dynamic resource sharing framework,
we developed a comprehensive simulation model focusing
on how resource multiplexing affects system utilization and
performance under different operational conditions.

Algorithm 1 Sliding Window Token Bucket for Malicious
Tenant Detection
Require: packet: incoming packet, tenant: tenant state ob-
ject
Ensure: Boolean: whether the tenant is malicious
1: currentTime = get_timestamp()
2: elapsed = currentTime — tenant.lastUpdate

3: tenant.tokens = min(tenant.tokenCapacity, tenant.tokens+

elapsed x tenant. fill Rate)

4: tenant.lastUpdate = currentTime

5: if packet.size < tenant.tokens then

6: tenant.tokens = tenant.tokens — packet.size

7 consumed = packet.size

8: else

9: consumed = 0

10 tenant.anomalyCount = tenant.anomalyCount +
1

11: end if

12: while currentTime > tenant.windowEnd do

13: Remove tenant.windows|0]

14: Append 0 to tenant.windows

15: tenant.windowEnd = tenant.windowEnd +
tenant.windowInterval

16: end while

17: tenant.windows[—1] = tenant.windows[—1] +
consumed

18: if Y (tenant.windows) > tenant.globalThreshold or
tenant.anomalyCount > tenant.consecutiveLimit
then

19: return True

20: else

21: return False

22: end if

A. Simulation Setup

The simulation targets a multi-tenant environment where
each tenant’s resource activity level varies dynamically. Key
parameters are set as follows.

o Overall performance gain (G): The net profit obtained
by the system through resource sharing, between -1 and
2.

o Sharing Ratio (p): The proportion of FPGA resources
designated for elastic sharing, varied from 0.1 to 0.9 in
increments of 0.1.

o Tenant Activity Level (a): Represents the average load
or utilization of each tenant, ranging from 0.05 (light
load) to 1.0 (full load), sampled at 20 intervals.

o Tenant Number (/V): Fixed at 10 for baseline experi-
ments, but also evaluated under N = 5, 20, and 50 to
explore scalability impacts.

Resource contention and coordination overhead are incor-
porated into the gain model, with the final system performance
gain adjusted by a logarithmic function of the tenant number.

The normalized performance gain of our FPGA-SDM mul-
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tiplexing scheme Equation as follow.
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e ¢ >0 and k£ > 2 model contention penalties,

the factor 1/1n(IN + 1) accounts for coordination over-
head as the tenant count N grows.

Jnet captures the trade-off between reusable function ben-
efits, p(1/a@ — 1), and contention penalties, c¢(p/a)*. We then
clamp gnet into the interval [—1, 2] to avoid unbounded
extremes, and finally scale by 1/1n(N+1) to reflect increasing
coordination cost as more tenants share the pool.

B. Evaluation Metrics

The core evaluation metric is the performance gain
achieved by dynamic resource sharing, defined as the relative
improvement in effective resource utilization compared to a
static resource allocation baseline. The model captures two
factors.

1) Statistical multiplexing benefits: Reduced resource
wastage when tenant loads are not fully overlapping.

2) Resource contention penalties: Performance degrada-
tion due to excessive simultaneous demand.

C. Simulation Results

Simulation results are visualized through Fig. 3, where the
X-axis represents tenant activity level (a), the Y-axis represents
sharing ratio (p), and the Z-axis shows the resulting normalized
performance gain.

Key observations include:

o Positive Gains Region: When tenants exhibit moderate

activity levels (a = 0.3-0.6) and moderate sharing ratios
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Fig. 4. Throughput comparison among normal and malicious tenants.

(p = 0.4-0.7), the system achieves noticeable perfor-
mance gains up to 1.5X compared to static allocation.

o Over-sharing Risks: As p increases beyond 0.8, per-
formance gains start to decline, highlighting the adverse
impact of excessive sharing-induced contention.

o Low-activity Limitation: Extremely low activity (a <
0.1) yields marginal gains because base resource demands
are too small to exploit multiplexing benefits effectively.

o Scalability Analysis: Experiments with larger tenant
numbers (N = 20,50) show that while multiplexing
opportunities increase, so does coordination overhead,
requiring careful design of control mechanisms.

D. Experimental

To evaluate the performance and fairness of the proposed
FPGA-SDM resource sharing framework, we conduct com-
prehensive simulations under different tenant behavior and
workload conditions.

1) Impact of Malicious Tenants on Throughput: We first
simulate the throughput performance for three types of ten-
ants: normal tenants with stable requests, malicious tenants
generating excessive requests, and tenants managed under
our proposed solution. As shown in Fig. 4, under increasing
request sizes, malicious tenants significantly degrade system
throughput compared to normal tenants. However, our frame-
work effectively mitigates this degradation, maintaining near-
optimal throughput levels even under adversarial behaviors.

2) Throughput Trends with Tenant Scaling: Fig. 5 illustrates
the system throughput as the number of tenants increases from
1 to 50. Due to natural resource contention and coordination
overhead, throughput does not scale linearly with tenant count.
We introduce stochastic variations to mimic real-world system
jitter. A general increasing trend is observed up to a saturation
point (around 30 tenants), beyond which throughput gains
diminish.

3) Effect of Packet Sizes and Tenant Numbers: To further
explore performance under variable packet sizes, we simulate
throughput across 64B to 1500B packets combined with
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different tenant numbers. As shown in Fig. 6, larger packet
sizes lead to higher achievable throughput due to improved
efficiency in network transmission. However, when tenant
numbers exceed 20, even large packet scenarios experience
resource saturation effects.

4) Summary: These simulations demonstrate that our pro-
posed dynamic sharing mechanism can maintain high through-
put and robustness against malicious tenants, effectively bal-
ancing resource efficiency and fairness even under multi-tenant
conditions.

V. CONCLUSION

We have introduced FPGA-SDM, an FPGA Network Func-
tion as a Service architecture that unlocks elastic sharing of
SmartNIC resources across multi-tenant workloads. FPGA-
SDM achieves high utilization through space division mul-
tiplexing and ensures strict performance fairness even in the
presence of bursty or malicious tenants. Experiments show

up the throughput can maintain a normal level under the
occupation of malicious users, and can maintain a certain
performance gain in multi tenant scenarios. Looking forward,
we plan to (i) extend the service pool with stateful transport
accelerators (e.g., QUIC offload) and (ii) integrate FPGA-
SDM into a Kubernetes-compatible orchestration layer so that
cloud operators can deploy FPGA micro-services using the
same abstractions as CPU/GPU functions. We believe these
steps will further cement SmartNICs in heterogeneous cloud
infrastructures.
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