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Abstract—Network emulator is an equipment used in the field
of computer networking to replicate and simulate real-world
network conditions, especially poor-quality network conditions
accompanied by various damages, in a controlled environment.
It plays a crucial role in the development, testing, and validation
of various new network-related technologies, protocols, and
applications. Compared with simulation and test-bed methods,
network emulation possesses the advantages of accuracy and
cost-efficiency. However, legacy network emulation methods are
implemented serially, which are typically restricted in efficiency
and waste computing resources. In this paper, we propose
a combined network emulator, CombNE. To implement this
emulator, we consider P4 programmable switches as a desirable
option. CombNE consists of three logical components. First,
CombNE provides a policy specification scheme to intuitively
describe operator’s intents. Secondly, the CombNE parallelizer
intelligently identifies the dependencies between network dam-
ages, automatically determines parallelization and generates a
combination strategy. Third, CombNE will generate optimized
P4 files and flow table information based on the combination
strategy and deploy them to P4 programmable switches. Finally,
we evaluated the performance and resources of CombNE.

Index Terms—network emulation, programmable switch, par-
allelization

I. INTRODUCTION

Since the birth of the Internet, human or accidental con-
ditions such as network throughput limitation, data packet
loss, data transmission delay and delay jitter have closely
accompanied the development of the Internet. Today’s Internet
is a huge system that is crowded, busy and complex [1].
Different network services and applications share the same
network infrastructure to send and receive traffic in a com-
petitive manner. In the realm of network infrastructure, data
traverses diverse network nodes, devices and protocols, each
exhibiting distinct forwarding capabilities and transmission
delays [2]. To emulate and characterize real-world networks
[3], network evaluators have distilled a range of parameters
from actual networks to describe the extent of network link
characteristic. These parameters include packet loss, latency,
bandwidth, jitter, reordering, and other pertinent factors. Due
to their adverse impact on regular links, we refer to these
parameters as network damages. Therefore, how to faithfully
mimic networks, especially the regular state and sudden dam-

age existing in the actual network, becomes an significant issue
[4].

Existing network emulation methods can be categorized into
two types: software and hardware. Software-based emulation
methods leverage software tools or emulators that run on
general-purpose hardware to emulate network behavior. Ex-
amples include OMNeT++ [5] and GNS3 [6]. While these
methods offer flexibility and scalability for larger networks,
their models often lack the full representation of real networks
in terms of both functionality and performance. On the other
hand, hardware-based methods utilize specialized hardware to
emulate network damages, these methods offer higher perfor-
mance and accuracy. Emulators like Cisco’s VIRL/CML [7] or
various FPGA-based solutions [8] fall into this category. They
are customizable like simulators and show great functional
fidelity. However, the size of experiments is bounded by
the available CPU or FPGA cycles and memory, making it

Fig. 1: The process of traditional serial network damage
implements.
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Fig. 2: CombNE framework supporting combined network damages.

challenging to provide precise performance results, especially
when emulating networks operating at Gbps levels.

Some research efforts try to emulate large networks within
one real switch. BNV [9] leverages multiple OpenFlow [10]
switches to emulate networks.However, due to the inflexibility
of OpenFlow switches, BNV is fundamentally limited and
fails in emulating large topologies and network performance
metrics, such as link delay. TurboNet [4] [11] is a network
emulator which leverages the power of programmable switches
[12] [13] to faithfully mimic functionality, scale, and perfor-
mance of production networks. And P7 [14] emulate certain
network link characteristics and instantiate a network topology
to run line-rate traffic using a single physical P4 switch.
These solutions provide new ideas for implementing network
damages on a switch, but they all continue the traditional
network emulator’s implementation of serial execution of
different network damages, lacking further optimization of
performance. So, it is possible to realize emulating certain
network damages in a parallel manner.As we just mentioned,
whether these solutions are hardware-based or software-based
their implementation is usually executed serially, which limits
the efficiency and accuracy of network damages.

A closer look into the network damages implements shows
that some damages share no dependency and could work in
parallel. For example, in the serial network damage imple-
ments shown in Fig. 1, the Tamper only needs to change
certain fields of the data packet, such as source IP, destination
IP, etc., while Delay only needs to add a specific timestamp
to the data packet, causing it to be sent after the qualifying
time is met. Therefore, as shown in the service graph in Fig.
2, we could send traffic into the Tamper and the Delay simul-
taneously, and merge them at the output to make them into

packets that contain timestamps and that specific fields have
been tampered with, achieving the same result as sequential
execution. Assuming that the execution time required for all
damages is the same (except for Delay), this way could bring a
theoretical latency reduction by 25%. In addition, the existing
network damage emulation have the following limitations:

As we just mentioned, whether these solutions are hardware-
based or software-based their implementation is usually ex-
ecuted serially, which limits the efficiency and accuracy of
network damages. A closer look into the network damages
implements shows that some damages share no dependency
and could work in parallel. For example, in the serial network
damage implements shown in Fig. 1, the Tamper only needs
to change certain fields of the data packet, such as source IP,
destination IP, etc., while Delay only needs to add a specific
timestamp to the data packet, causing it to be sent after the
qualifying time is met. Therefore, as shown in the service
graph in Fig. 2, we could send traffic into the Tamper and the
Delay simultaneously, and merge them at the output to make
them into packets that contain timestamps and that specific
fields have been tampered with, achieving the same result
as sequential execution. This way could bring a theoretical
latency reduction by 25%. In addition, the existing network
damage emulation have the following limitations:

1) There are logical conflicts between different network
damages. For example, the packet loss will change the
number of data packets, and if it precedes the packet
tampering module, it will affect the damage accuracy of
the latter.

2) Wrong serial execution network damage leads to a
waste of device hardware resources. For example, the
implementation of packet loss logic means that other
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damages do not need to occupy additional computing
resources.

3) Network damages usually have time constraints. Serial
execution of the network damages cannot meet the
delay limit of packet-by-packet forwarding under high
throughput.

Therefore, we propose CombNE, a combined network emu-
lator, that innovatively embraces network damages parallelism
to reduce network emulation latency. And we implement
it into Tofino programmable switch. As shown in Fig. 2,
CombNE consists of three logical components including a
policy specification scheme, CombNE parallelizer, and P4
programmable switch. Our main contributions are:

• We present the motivation and design challenges of intro-
ducing network damages parallelism into emulation, and
propose the CombNE framework that exploits network
damages parallelism to improve emulation performance
and save hardware resource usage.

• We provide a policy specification scheme for intuitively
representing sequential or parallel network damage re-
quirement of network operators to improve the combined
emulation effect.

• We design CombNE parallelizer that can intelligently
identify the dependencies between network damages,
automatically determines parallelization and generate P4
files and flow table information containing the combi-
nation strategy, and deliver them to P4 programmable
switch.

• We optimize the P4 code so that the P4 compiler can
perform network damages according to the ideal serial-
parallel combination.

• We implement CombNE based on Tofino programmable
switch that support P4 programming. And in the evalua-
tion section, we compared CombNE with other emulators
such as Turbonet and P7 and compared different serial-
parallel combinations.

II. BACKGROUND AND MOTIVATION

This section first describes the background and motivation
for adopting combined network emulator. We then introduce
design challenges of CombNE.

Network emulator and network damages: It helps testers
and network engineers understand how the network performs
and copes with different environments by introducing various
network damages. Table 1 shows Different types of network
damages include packet loss, delay, bandwidth limitations,
jitter, out-of-order, etc. Loss can simulate the loss of data
packets in the network, and Delay is used to simulate the
delay of data packets during transmission. Bandwidth allows
the evaluation of performance under network congestion or
limited bandwidth, Jitter simulates latency fluctuations in the
network, and Reordering is used to simulate changes in the
order in which packets arrive at their destination. [15] [16]
The network emulator enables a comprehensive assessment
of the robustness and performance of network devices and
applications under different adverse conditions. But the

TABLE I: Network Damage Types Table

Type Description
Loss Simulates loss of data packets
Delay Simulates delay in packet transmission
Bandwidth Restricts network bandwidth
Jitter Simulates fluctuation in delay
Reordering Simulates changes in packet arrival order

main problem with network emulator is that it is difficult
to perfectly balance functions and performance. Traditional
hardware network emulators have developed from the needs
of adapting to operators and communication equipment man-
ufacturers, and are more focused on ensuring test throughput
and simulation accuracy. There is a lack of exploration of the
diversity of network types and network scenarios. There are
also some software network emulators on the market. During
the development process of some simulation software, some
network scenarios and network type templates are built in
using network detection results, which are more in line with
the usage scenarios of Internet companies. And we compared
three different commercial network emulators as shown in
Table 2.

In addition, current network emulators typically execute
serially, meaning they perform network damages one at a time
in a certain order. This serial execution method may result in
inefficient emulation and waste computing resources. Because
some network damages may be independent of each other, in
the current context they fail to take full advantage of parallel
processing.

Network Damages Emulation in Programmable
Switches: Programmable switches conduct re-configurable
pac-ket processing on data planes with high bandwidth.
The flexibility of programmable switches enables agile
customization of emulated networks, allowing users to
validate their design in various network environments. With
the programmability that P4 brings to networking researchers
and the capabilities of new generation P4 hardware supporting
the PSA (Portable Switch Architecture) [17] and TNA (Tofino
Native Architecture) [18], it is possible to emulate certain
network damages using a single physical P4 switch (e.g.,
Tofino). TurboNet and P7 are good examples.

III. POLICY DESIGN

The traditional network emulator will execute in a fixed
order according to the damages configured by the network
operators, which cannot well reflect the true intention of
the network operators, nor can it support combination well.
Therefore, CombNE provides a policy specification scheme
that allows operators to express their intentions more clearly
and contributes to the subsequent generation of combined
policies. The main policy rules include the following:

Arrange Serial (damage 1, damage 2, damage 3, . . . ):
This rule means that the two network damages are imple-
mented in the order of damage 1 first, then damage 2, and
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TABLE II: Network Emulators Feature Comparison Table

Emulators Spirent Apple Network Link Conditioner Linux Traffic Control

Type Hardware Software Software

Supported Platforms Unlimited MacOS, iOS Unlimited

Bandwidth

Bit rate control Supported Supported Supported

Queue depth Not supported Not supported Supported

Burst traffic Not supported Not supported Supported

Loss Packet

Supported or Not Supported Supported Supported

Type

Random Random Random

Cycle 4-state Markov

Gilbert-Elliot

Constant Delay Supported Supported Supported

Jitter

Supported or Not Supported(With reordering) Not supported Supported(Configurable)

Distribution

Linear Not supported Evenly

Range Normal

Gaussian Pareto

Burst Supported Not supported Can be achieved through automation

Preset scenes No Yes No

Automation Integration Support Restful API Controllable via AppleScript Linux command line, scripting languages

Command control accuracy 10ms 1000ms Depends on system performance

finally damage 3. For example, in the network damage im-
plements shown in Fig. 1, the network operator can first send
the traffic to Loss, then to Delay, third to Tamper, and finally
to Reordering by specifying Arrange Serial (Loss, Delay,
Tamper, Reordering). This rule type can be used to describe
a sequential network damages composition intent. Therefore,
this provides network operators with a richer combination of
damage intent while ensuring the compatibility of CombNE
to support sequential network damages. It is worth noting that
this policy will directly be used in the construction of the final
combined strategy and CombNE parallelizer could not explore
parallelism opportunities for the network damages in Sequence
rules.

Arrange Parallel (damage 1, damage 2): This rule de-
scribes the parallel execution of two network damages. Net-
work operators can execute corresponding network damages
in parallel by specifying Arrange Parallel (damage 1, dam-
age 2). If operators do not express parallel intention by this
rule, CombNE will automatically collect all other network
damages except serial arrange and create this parallel rule
for them. Before generating the final combined strategy, the
CombNE parallelizer will collect these rules and make paral-
lelization decisions based on whether there is a dependency
between the two network damages. If the two damages are
non-parallelizable, they are executed in the order of their
respective priorities.

Prior (damage 1, damage 2): Conflict may arise between
two network damages when network operators want to de-
scribe the intent of executing them in parallel. For instance,
when there is Loss, other damage operations will conflict
with the issue of whether to lose packets. Therefore, network
operators can specify the priority of two network damages
by Prior (damage 1, damage 2) rule. If operators do not
specify any priority rules, CombNE assigns default priorities to
non-parallelizable network damages, where the default priority
order is: Loss > Delay = Shaping > Reordering > Tamper
> Other.

First/Last (damage 1): Since Loss marks the drop field of
the data packet, the marked data packet will be dropped at
the egress. Therefore, damage Loss should be set as the first
position to avoid other damages from operating on the marked
data packets, thereby reducing resource waste. To achieve this
intention, CombNE provides First/Last (damage 1) rules for
operators to set the first/last damage. It should be noted that
this rule is only allowed to be set once. Multiple First/Last
(damage 1) rules will cause conflicts when CombNE gener-
ates the final combination strategy.

With above rules, network operators can define network
damage intents by composing multiple rules into a policy to
describe a network damages combination. (Fig. 2). Finally,
the rules manually written by operators could possibly conflict
with each other. For example, an operator could assign a net-
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work damage at different positions, i.e. First (damage 1) and
Last (damage 1). The challenges of policy conflict detection
and resolution have been recognized and studied in [19]. We
will refer to prior wisdom and leave them to our future work.

IV. PARALLELIZER DESIGN

CombNE parallelizer takes the CombNE policies as input,
identifies network damage dependencies, and automatically
compiles policies into high performance combination strategy
with parallel damages. This section will introduce each step
in the combination strategy construction process in detail.

A. Network Damages Parallelism Analysis
As introduced above, for CombNE policies, we provide a

Arrange Parallel rule to make two network damages execute
in parallel. For network damages that are not specified by
the operator through policy, CombNE parallelizer will retrieve
them and assign Arrange Parallel rules to them. So, we can
further explore their parallelism possibility.

When the CombNE parallelizer receives policies, it will first
create a mapping table named Network Damage Action Map
(Table 3) based on the current network damages, which is
used to store the operation fields and operation information
of each damage. The operation fields are header fields, and
the operation information values include reading and writing.
Through this table we can observe that the actions of different
network damages may conflict with each other. For instance,
the Delay and the Shape both add a timestamp field. If
the operator inputs an Arrange Parallel (Delay, Shape), the
parallelizer is challenged to identify the parallelism possibility
of the two network damages for high performance.

To analyze whether two network damages are parallelizable,
the most important point is whether the damages execution
result after parallel execution is the same as that of sequential
execution. By this principle, we give Network Damage De-
pendency Table (Table 4). This table includes the respective
operation information of the two network damages and the
dependency relationship between the operation information
of the two damages. The T1 and T2 represent parallelizable
situations, and the difference lies in whether the data packet
needs to be copied. For example, suppose damage 1 reads
the packet header, and damage 2 later modifies the same
header field. To ensure that damage 1 reads the original header
that has not been changed by damage 2, we could copy the
packets and send two copies into damage 1 and damage 2 in
parallel. This method can further optimize performance and
reduce resource waste. F denote unparallelizable situations.
For example, if damage 1 first writes a packet header and later
damage 2 reads this header, the operator intends to transmit
the modification of damage 1 to damage 2. Therefore, the two
damages should work in sequence.

B. Network Damages Parallelism Identification
Based on above network damages parallelism analysis, we

propose a network damages parallelism identification algo-
rithm and the CombNE parallelizer will execute according to
this algorithm.

TABLE III: Network Damage Action Map. (R for Read,
W for Write, T for True, F for False,and ADD/RM for
Add headers to or Remove headers from packets)

NDs

Opt Field
SIP DIP SPORT DPORT DROP ADD/RM

Loss R R R R T F

Tamper R/W R/W R/W R/W F F

Reordering R R R R F F

Delay R R R R F T

Shape R R R R F T

... ... ... ... ... ... ...

TABLE IV: Network Damage Dependency Table. (T1
means that it can be parallelized and does not need to
copy data packets, T2 means that it can be parallelized
but needs to copy data packets, and F means that it cannot
be parallelized.)

Damage1

Damage2
Read Write Add/Rm Drop

Read T1 T2 T2 T1

Write F T2 T2 T1

Add/Rm F F T2 T1

Drop F F T2 T1

Network damages parallelism identification algorithm:
The CombNE parallelizer maintains a Network Damage Ac-
tion Map (NDAM, i.e., Table 3) and a Network Damage
Dependency Table (NDDT, i.e., Table 4), and takes the Ar-
range Parallel rule as input. The algorithm can determine
whether two NDs can be parallelized without packet replica-
tion or with packet replication, or cannot be parallelized. After
receiving a Arrange Parallel rule as input, the CombNE paral-
lelizer obtains all operations of the two network damages from
the network damage action map (Table 3), and then obtains
all action pairs in the two network damages (such as the read
operation of the first damage and the write operation of the
second damage together constitute an action pair). Secondly,
the CombNE parallelizer determines whether the two network
damages can be parallelized according to the network damage
dependency table (Table 4). For the read-write or write-write
case, we need to further determine whether the two actions
operate on the same field. If the two NDs can be parallelized
by packet replication, the conflicting operations need to be
recorded. Finally, the algorithm generates outputs of whether
the two NDs are parallelizable (p) and the possible conflicting
operations (ca), and inserts p into the Arrange Parallel rule.
The existence of conflicting operations indicates that packet
duplication is required. Through this algorithm, the CombNE
parallelizer adjusts the policy according to the p field in the
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Algorithm 1 ND Parallelism Identification

1: Input: Arrange Parallel(ND1, ND2)
2: Output: Arrange Parallel(ND1, ND2) with Paralleliz-

able p, Conflicting actions ca
3: actions1← gatAction(NDAM, ND1)
4: actions2← gatAction(NDAM, ND2)
5: p = TRUE
6: ca = NULL
7: for (a1, a2) ∈ (actions1, action2) do
8: if (a1, a2) = (read,write) or (write,write) then
9: if (a1, a2) operate on the same field then

10: ca.extend(a1, a2)
11: continue
12: end if
13: end if
14: switch (fetchParallelism(NDDT, (a1, a2)))
15: case NOT PARALLELIZABLE:
16: p = FALSE
17: return
18: case PARALLELIZABLE NO COPY:
19: continue
20: case PARALLELIZABLE WITH COPY:
21: ca.extend(a1, a2)
22: end switch
23: end for
24: Arrange Parallel(ND1, ND2) ← p

Arrange Parallel rule. Those rules that are judged as true will
be regarded as policies and added to the generation of the
final combined policy, while those rules that are false will
be converted to Arrange Serial policies according to their
damage priority.

C. Combination Strategy Construction

The CombNE parallelizer will go through three steps to
construct combination strategy based on policies. First, the
policies will be transformed into storage states. Then, the
parallelizer will compile the storage states into independent
separation strategies. Finally, these separate strategies will be
constructed a final combination strategy.

Transforming Policies into Storage States. We design
three types of storage states to store policies, as shown in Fig.
3. For Arrange Parallel and Prior rules, we implement the
parallelism identification algorithm to check whether the NDs
(Network Damages) can be parallelized and attach priority
to them. The Arrange Parallel and Prior rules are finally
transformed into the representation shown on the left, which
reveals the relationship between two NDs. For First/Last rules,
we maintain the ND type and its first/last position in the
middle representation block, which records the placement of
a single ND. For Arrange Serial rules, as shown on the
left, we use the Map type to store multiple NDs executed
sequentially, and their positions and damage types correspond
to the keys and values in the map. Compiling Storage States
into Separate Strategies. After transforming policies into

Fig. 3: Combination Strategy Construction Workflow

storage states, we will construct separate strategies based on
them. First the CombNE parallelizer will compile the storage
states transformed by Arrange Parallel and Prior rules. This
will result in two different outcomes as shown in ND3 and
ND4 in Table 3. If the parameter is parallelizable is true, ND3
and ND4 will be combined in parallel. Otherwise, they will
be combined in series according to their priority. Second, the
storage states of First/Last rules will be compiled into the
separate strategies directly connected to the output. Finally,
the storage states of Arrange Serial rules will be compiled
into the separate strategies for internal network damages to be
connected in the original order.

Merging Separate Strategies into Combination Strategy.
The principle of merging separate strategies is based on their
priorities. The separate strategies assigned by First/Last rules
are first placed in the head/tail of the final strategy. For
parallelizable network damages, we set the priority of its
separate strategy to the priority of the higher-priority network
damage. Then we will compare the priority of the parallel
separate strategy with the first and last network damages in
the serial separate strategy and merge based on the comparison
results. Finally, the separate strategies at the input and output
are merged to generate a final combination strategy.

V. IMPLEMENTATION IN P4

While P4 code appears to execute in a sequential manner,
the implementation of P4 in Tofino supports parallelism. This
means that multiple operations can be executed simultane-
ously, with conditional statements being able to execute in
parallel. Although the P4 compiler will automatically generate
corresponding parallel execution code based on the struc-
ture and requirements of the program to improve processing
efficiency. However, it cannot well support the serial and
parallel combination of specific impairments. This section
proposes the damage control block programming interface and
an optimization method for P4 code.
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A. Damage Control Block Programming Interface

CombNE parallelizer will generate P4 code and flow table.
We provide a damage control block programming interface in
the parallelizer to convert user damage intention into damage
function in P4, and it hides the platform-specific metadata by
providing a simple API with only one argument.

control XX_YY_damage (inout all_headers_t hd);

The “XX” in the function name corresponds to the type
of network damage, and “YY” represents the different classi-
fications of the damage. The argument hd is instantiated by
the generic parser and provides all required protocol header
fields, platform metadata and context metadata for the network
damages. Code 1 shows an example implementation of a
simple random packet loss damage. It can achieve random
packet loss operation with an accuracy of 0.1%. The random
number interval generated by the random method in P4 can
only be within the nth power of 0 to 2n, so the packet
loss parameter needs to be converted first. After the random
number is generated, it needs to be compared with the packet
loss parameter. If it is smaller than the packet loss parameter,
the drop operation will be performed. Otherwise, it will be
forwarded normally.

B. Serial-Parallel Combination in P4

CombNE employs various methodologies to orchestrate
Network Damages and formulate a unified, multi-pipeline
P4 program suitable for compilation and deployment onto
physical pipelines. In an effort to optimize resource utilization,
CombNE consolidates multiple damages onto a single pipelet
whenever hardware constraints permit. The determination of
whether two damages can share a common pipelet necessi-
tates a comprehensive understanding of the hardware resource
consumption associated with each damage. This pertinent
information is typically provided by the P4 compiler, which
furnishes detailed resource consumption metrics such as MAU
stages, SRAMs, and TCAMs for a given P4 program [20].

Network damages can be composed either sequentially or
parallelly to share the pipelet in different ways. Code 2 shows
the implementations of these two composition approaches
wrapped in an ingress processing block. The first implements
parallel calls with either packet loss or constant latency, but
not both at the same time. After the packet passes a damage,
CombNE will check the header to determine the type of
damage to be performed next. In the second implementation,
CombNE is called sequentially with random packet loss and
constant delay, and then performs similar checks.

The two composition approaches offer an efficiency and
feasibility trade-off for network damages placements. Paral-
lel composition allows multiple damages to share the same
MAUs, and thus can pack more damages on a pipelet. How-
ever, since packets can only traverse one branch on a pipelet,
transitions from one branch to another require at least one
resubmission or one recirculation.

On the contrary, sequential composition places multiple
damages back-to-back on a pipelet and has no extra transition

control Loss_Random_damage(inout all_header_t hd){
bit<10> loss_parameter =

hd.meta.loss_parameter/1000*2ˆ10;
Random<bit<10>> random;
action drop(){

hd.meta.dropFlag = true;
}
action hit(Port_t port){

hd.meta.egress_port = port;
}
table forward{

key = {hd.ethernet.dst_addr:exact;}
actions = {hit;}
const default_action = hit();

}
apply{

if(random < loss_parameter){
drop();

}
forward.apply();

}
}

Code 1: An example of a simple random packet loss
damage using CombNE’s programming interface.

//parallel operator
control MyIngress(inout all_header_t hd, inout

common_metadata_t md, inout standard_metadata_t
standard_metadata){

apply{
if(check_damage.apply().Loss_Random){

Loss_Random_damage.apply(hd);
}else if(check_damage.apply().Dalay_Constant){

Dalay_Constant_damage.apply(hd);
}
check_nextND(hd);

}
}
//sequential operator
control MyIngress(inout all_header_t hd, inout

common_metadata_t md, inout standard_metadata_t
standard_metadata){

apply{
if(check_Loss_Random_damage.apply()){

Loss_Random_damage.apply(hd);
check_nextND(hd);

}
if(check_Forward.apply()){

Dalay_Constant_damage.apply(hd);
check_nextND(hd);

}
}

}

Code 2: An example of the sequential and parallel
compositions. Both invoke Loss of Random and Forward
on the same pipelet.

cost among those damages. However, in sequential com-
position, multiple network damages may access the same
data fields in argument hd and thus incur different types of
dependencies, e.g., match, action, or successor dependencies.
And sequential composition enforces the P4 compiler to place
the network damages in separate MAU stages, which may fail
if the pipeline does not have enough stages.
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VI. EVALUATION

A. Overview

We deployed CombNE on a Barefoot Tofino switch.The
switch is equipped with an Intel J1900 4-core 2.0GHz CPU
and 8GiB memory, and has a total of 54 data interfaces and 2
management interfaces. The data interface includes 48 10GbE
(SFP+) or 25GbE (SFP28) interfaces and 6 40GbE (QSFP+)
or 100GbE (QSFP28) interfaces. The management interface
includes a 10/100/1000M management interface. Network port
and 1 standard UART console serial port.We will put two
servers through the link to this switch for testing.The servers
are equipped with two Intel(R) Xeon(R) E5-2690 v2 CPUs
(3.00GHz,10 physical cores), 256G RAM and two 10G NICs.
The servers run Linux kernel 4.4.0-31.

Next, We will evaluate CombNE from two aspects. First,
we tested the latency of deploying multiple damages of the
same type in different serial and parallel combinations in
CombNE and compared them with TurboNet and P7. Then
we combine multiple types of network impairments in different
ways and evaluate them in three emulators.In order to facilitate
unified evaluation results, the network damage standards we
implement through P4 data plane programming are as follows:

Loss: Set a fixed probability of 2% for packet loss for a
specific data flow.

Delay: Add a fixed delay of 100ns to packets that meet
the conditions, implemented through recirculate in the PSA
architecture.

Tamper: Modify a field of a data packet.
Reordering: Each data packet changes position with the

next data packet with a 10% probability.

B. Network Damage Number on Performance

To avoid read and write conflicts between multiple identical
network damages, we selected the Tamper damage for testing.
We set 1 to 5 Tamper in hybrid(serial-parallel) combinations
in three Emulators and tested the latency of packet forward-
ing.The results are shown in Fig. 4. Under the execution of
serial and parallel combination, we can find that as the number
of damages increases, the latency required by CombNE to
process data packets is lower than TurboNet and P7. When
the number of network damages is 5, CombNE’s single packet
forwarding delay is reduced by about 20ns compared to other
emulators.

C. Evaluation of Multiple Combinations

In this part, we simulated and evaluated a set of series-
parallel combination network damages, and tested its perfor-
mance and resource usage.We selected four typical network
damages: Loss, Delay, Tamper, and Reordering, and executed
them in combination with serial and parallel combinations(Fig.
1) in CombNE and the other two Emulators.

Single Packet Forwarding Latency First, we measured the
single packet forwarding latency of three different emulators
executed in serial, parallel, and serial-parallel combinations.
As shown in Fig. 5(a), we can see that the packet forwarding
latency of the three emulators are similar under serial and

Fig. 4: Latency comparison of three emulators with mul-
tiple Tamper damages in hybrid combinations

parallel execution. However, CombNE’s latency under hybrid
execution is significantly lower than TurboNet and P7.

Network Bandwidth Then we measured the bandwidth,
connected the server to the switch, and used a 10G network. As
shown in Fig. 5(b), since parallelization can use more comput-
ing and transmission resources, the bandwidth of parallelized
execution is the highest. Serial execution limits the use of
transmission resources, so it has the lowest bandwidth. When
the three emulators are all executed in the Hybrid mode, the
average bandwidth of CombNE is higher than the other two
emulators.

ASIC Resource Usage We evaluated the hardware re-
sources required by Comb-NE under hybrid execution, in-
cluding memory resources (SRAM, TCAM) and computing
resources (VLIM, SALU, Crossbars, Gateway), and compared
with other emulators in serial and parallel situations. Since
the network loss combination is similar in terms of serial and
parallel resource usage in various emulators, we group it into
one item here for comparison with the hybrid execution in
CombNE. Fig. 5(c) shows the resource usage of CombNE and
other emulators.We can see that the hardware resource usage
of CombNE executed in hybrid mode is generally lower than
that executed in parallel mode, but higher than that executed
in serial mode.

VII. CONCLUSION

This paper presents CombNE, a combined network emulator
that leverages a programmable switch to simulate various
network damages. Meanwhile, CombNE can also combine
its serial and parallel execution methods according to the
optimal solution to improve performance and reduce resource
overhead. We implemented a prototype in a P4 programmable
switch and demonstrated its performance and overhead. As
our future work, we will gradually implement more and more
complex network damages, such as Markov four-state packet
loss, normal distribution delay, etc., and conduct experimental
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Fig. 5: Performance and resource comparison of three emulators with multiple damages in a serial-parallel combination

verification of more serial and parallel combinations of those
damages.
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