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With the evolution of Space-based backbone networks, the demand for enhanced efficiency and stability in
network resource allocation has become increasingly critical, presenting a substantial challenge to conventional
allocation methods. In response, we introduce an innovative resource allocation algorithm for space-based
backbone networks. This algorithm represents a synergistic fusion of Deep Reinforcement Learning (DRL)
and Local Search (LS) methodologies. It is specifically designed to reduce the extensive training duration
associated with traditional policy networks, a crucial aspect in assuring optimal service quality. Our algorithm
is structured within a two-stage framework that seamlessly integrates DRL and LS. A distinctive feature of
our approach is the incorporation of link reliability into the algorithmic design. This element is meticulously
tailored to address the dynamic and heterogeneous nature of space-based networks, ensuring effective resource
management. The effectiveness of our approach is substantiated through extensive simulation results. These
results demonstrate that the integration of DRL with LS not only enhances training efficiency but also exhibits
significant improvements in resource allocation outcomes. Our work represents a noteworthy contribution to
the development of practical optimization strategies in space-based networks, merging DRL with traditional
methodologies for improved performance.

1. Introduction

Fig. 1 illustrates the intricate structure of the space-based backbone
network, which is composed of a diverse array of satellites located

The burgeoning advances in space technology have made the con-
struction of space-based backbone networks, leveraging satellites and
space vehicles, an inevitable trend [1]. These networks, characterized
by their unique attributes, are poised to augment traditional terrestrial
networks, offering expansive global coverage and reduced latency in
access. In the context of these networks, efficient resource management
emerges as a critical component to ensure Quality of Service (QoS),
especially given the dynamic nature and specific constraints of such
systems.

along different orbital paths. This multifaceted network integrates vari-
ous types of constellations, including GEO (Geosynchronous Equatorial
Orbit), MEO (Medium Earth Orbit), and LEO (Low Earth Orbit) systems.
These satellites are interconnected through Inter-Satellite Links (ISL)
and Inter-Orbital Links (IOL), forming a comprehensive network. It is
worth noting that in the space network structure we are considering, a
layered design idea is adopted, similar to the Model-View-Controller
(MVC) design pattern in software engineering. This design not only
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Fig. 1. Space-based backbone network architecture.

reduces the need for direct long-distance links while utilizing the
MEQ satellites as relays to improve the flexibility and reliability of
the network, but also helps to clarify the layering at the space and
business levels. The GEO satellites are indirectly connected to the LEO
satellites through the MEO satellites, rather than being directly cross-
connected through the IOL. Specifically, GEO satellites, MEO satellites
and LEO satellites take on different roles and functions respectively;
GEO satellites are located in the highest layer and are mainly re-
sponsible for providing stable global coverage and long-term services;
MEQ satellites are located in the middle layer and act as a bridge,
responsible for connecting the GEO and LEO layers and providing
relay services; LEO satellites are located in the lowest layer and are
responsible for providing fast communication services near the ground
with their low-latency and high-throughput characteristics fast commu-
nication services near the ground. The strategic implementation of a
LEO satellite constellation as the core network infrastructure, supported
by a cohesive control architecture for satellites in medium and high
orbits, brings forth significant advantages. Nevertheless, the dynamic
nature and heterogeneity intrinsic to space-based backbone networks
pose formidable challenges in the realm of resource management. These
challenges are pivotal in ensuring the QoS, a critical aspect in the opera-
tion of these networks. Addressing these challenges requires innovative
approaches to effectively manage the resources while adapting to the
dynamic conditions and varied requirements inherent in space-based
network systems.

The development of China’s space-based information network [1,2],
encompasses a diverse fleet of aircraft in various orbits, each charac-
terized by distinct types and performance capabilities, in addition to
related ground facilities and application systems. This network is distin-
guished by its ability for intelligent acquisition, storage, transmission,
processing, integration, and dissemination of information. It is further
enhanced by a high level of autonomous operational and management
competencies. In this context, the architecture of China’s space-based
information network involves both Earth Observation (EO) services,
for monitoring and analyzing the Earth’s surface and atmosphere, and
Satellite Communication (SatCom) services, for remote communication
and data transmission. Therefore, our solution aims to optimize the
allocation of network resources to support the efficient operation of

these services. Specifically, the optimization objectives include increas-
ing network throughput, and enhancing service reliability, while taking
into account constraints such as satellite transmission capacity and link
bandwidth limitations.

In such a context, the task of resource allocation in the space-
based information network is a multifaceted challenge, involving multi-
source, multi-type dynamic scheduling. The essence of modeling and
algorithm development in this domain is underpinned by the concept
of resource virtualization. This approach aims to standardize the cate-
gorization of resources, facilitating more efficient modeling processes.
Consequently, Network Virtualization (NV) presents itself as a viable
solution to these challenges. NV technology enables the abstraction,
segmentation, and distribution of the foundational physical network
infrastructure. Virtual Network Embedding (VNE) plays a pivotal role.
VNE is the process of mapping virtual networks (VNs) onto a shared
substrate network (SN), also known as a physical network (PN). The
goal of VNE is to efficiently allocate the resources of the substrate
network to support the demands of multiple virtual networks, thereby
maximizing the utilization of the substrate network and ensuring the
coexistence of multiple VNs. Therefore, by delving into the realm
of multi-domain VNE algorithms [3], it becomes possible to effec-
tively tackle the inherent resource allocation challenges in space-based
backbone networks.

In recent years, deep reinforcement learning (DRL) has shown great
potentials in dealing with dynamic resource allocation problems [4,
5], and attractive results have been achieved on several challeng-
ing problems such as Go [6], application recommendation [7] and
combinatorial optimization [8-10] are representative problems where
DRL has made progress. In a more detailed context, models based
on DRL have been introduced as solutions to a variety of NP-hard
optimization challenges. These include, but are not limited to, the
Maximum Cut Problem(MCP) [11], and the Travelling Salesman Prob-
lem (TSP) [12], the vehicle routing problem (VRP) [9,13], the Knap-
sack Problem, the Bin-Packing Problem, and the Capacitated Facility
Location Problem [14,15].

However, there are several challenges in solving the VNE problem
with DRL:
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* In the realm of space-based communications, signals traverse
extensive propagation paths and encounter intricate multi-hop
queues. Given the substantial distances between satellites and
ground stations, the imperative for reliability is paramount. How-
ever, existing algorithms demonstrate a notable deficiency in
the quantification of this reliability, a critical aspect in such
long-range communication systems.

The training phase of DRL models is notably time-intensive. De-
spite the rapidity of DRL inference, the extensive duration re-
quired for the training process remains a significant considera-
tion.

Current DRL models often face challenges in achieving an optimal
balance between exploration and exploitation mechanisms. This
imbalance can lead to a compromise in the quality of the solutions
generated.

To address the aforementioned challenge and secure an optimal solu-
tion within a feasible computational timeframe, we propose a two-stage
framework for solving node embedding. The node embedding phase
is divided into two stages. The first phase is implemented by a pol-
icy network for DRL, while the second phase considers local search
heuristics.

The specific contributions of this paper are as follows:

* We propose a VNE algorithm that synergistically combines DRL
with LS techniques. This integrated framework proficiently ad-
dresses the VNE problem, delivering satisfactory solutions while
maintaining reasonable computational efficiency.

In addition to traditional metrics like CPU capacity and link
bandwidth, our approach uniquely incorporates considerations of
node packet loss and link reliability. This expanded metric set
is crucial to fulfill the requirements for reliable link connections
within space-based backbone networks.

A comprehensive series of simulation experiments were under-
taken, wherein the key performance metrics of VNE were juxta-
posed with those derived from alternative algorithms. The effec-
tiveness of our proposed algorithm is confirmed.

The rest of the paper is organized as follows. We begin by analyzing
related work in Section 2. Section 3 introduces the VNE related issues
and models the system. In Section 4, the detailed architecture and
implementation specifics of the algorithm are delineated. Subsequently,
Section 5 provides a comprehensive presentation of experimental out-
comes and evaluative findings. Finally, a summary of the work and an
outlook for future work is given in Section 6.

2. Related work

In the previous decade, exact and heuristic algorithms have been the
mainstream for solving VNE problems, such as Tabu Search algorithm
and Genetic algorithm often used as baseline algorithm in other papers.
In recent years, the advent of Reinforcement Learning (RL) has marked
its ascendancy as a predominant method for addressing NP-hard chal-
lenges, such as VNE. In this section, we introduce Exact and Heuristic
algorithms and Reinforcement Learning algorithms, In order to show
more clearly the differences in technical approaches, optimization ob-
jectives and constraints among different research works, we summarize
some representative related works in Table 1.

2.1. Exact and heuristic algorithms

VNE has been studied for decades, and researchers have developed
a large number of solution methods, including the Exact, the Heuristic
and the Meta-Heuristic [27]. Exact algorithms, including linear pro-
gramming (LP) methods, integer linear programming (ILP) [18] and
mixed integer linear programming (MILP) [19], are able to give optimal
solutions under exhaustive conditions. However, as the problem size

and complexity increase, the computational complexity of the exact
algorithms for solving the active optimal solution increases exponen-
tially, requiring a large amount of computational resources to obtain
the optimal solution. To reduce the computational effort, it is usu-
ally necessary to design approximate or heuristic algorithms that give
times these algorithms according to the characteristics of the problem
using heuristic techniques or heuristic rules to effectively prune the
combinatorial mathematical explosion problem, greatly reducing the
search space. Approximate and heuristic algorithms provide feasible
and effective methods for solving large-scale complex problems.

In contrast to exact algorithms, heuristic algorithms do not find
the absolute optimal solution for each VNE when simulating VNE
problems. The heuristic algorithm can give a sub-optimal but good
enough VNE solution. This is done by sacrificing absolute optimal-
ity [28]. The aim is to improve computational speed. This allows the
heuristic algorithm to provide solutions at urgent time intervals. This
makes heuristic algorithms well suited for large-scale VNE problems
with real-time requirements for evaluation. However, heuristic algo-
rithms have the disadvantage of falling into a local optimal solution
while having difficulty in reaching a global optimal solution when
solving optimization problems. Local Search (LS) method also known
as neighborhood search, are an important class of heuristic algorithms.
Local search starts from an initial solution and searches in the space
around the initial solution to obtain a better solution. Many well-
known heuristic algorithms are derived based on the idea of local
search, including Simulated Annealing [20,21], Tabu Search [22] and
Variable Neighborhood Search (VNS) [23]. Local search heuristics are
widely used in Combinatorial Optimization Problem, Vehicle Routing
Problem (VRP) and other fields for solving practical problems due
to their flexibility and efficiency. However, when the solution in the
neighborhood space does not improve, the search stops and thus falls
into a local optimum. Therefore the quality of the initial solution
becomes particularly important.

2.2. Reinforcement learning algorithms

RL is another emerging class of methods for solving combinatorial
optimization problems. Unlike traditional heuristic algorithms that rely
on manual design, RL automatically learns problem-solving strategies
through interaction with the environment. Aiming at the characteristics
of combinatorial optimization problems, researchers have proposed
various algorithmic frameworks for integrating RL. For instance, the
Deep Q-Networks (DQN) based RL framework employs deep neural
networks for approximating the value function within optimization
problems. This approach incrementally converges towards an optimal
strategy by means of empirical adjustments [29]. Zhang et al. [24]
investigated a node probability-based RL framework for VNE. The
paper proposes a VNE algorithm based on node probability using RL.
Afifi et al. [25] introduced a RL framework grounded in Q-Learning,
which adopts either a greedy Epsilon or an Epsilon decay strategy
for exploration purposes. The outcomes derived from these two ex-
ploration methodologies were juxtaposed with those obtained from
optimization techniques. Empirical evidence demonstrates that the RL
framework yields favorable results, particularly in reducing network
latency, within a limited number of iterations. Zhang et al. [26] devel-
oped an algorithm for VNE that integrates computational and storage
resource considerations alongside security constraints. This approach is
designed to guarantee both the rationality and security of resource al-
location within Industrial Cyber-Physical Systems (ICPS). The proposed
algorithm encompasses a robust two-stage RL-VNE framework. It com-
prehensively incorporates a tri-dimensional resource constraint model,
addressing computation, storage, and security aspects simultaneously.

3. Problem statement

In this section, we present the resource allocation problem in space-
based backbone networks, including problem description, modeling
and formulation.
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Table 1
Summary of related work on virtual network embeddinzg.

Reference Node-Link constraints

Optimization approach

Main contribution

Chowdhury [16](2012) CPU, link bandwidth

Relaxed LP model, rounding

Model VNE problem by using MILP model for the first time in the

techniques literature.
Melo [17](2013) Node location, CPU, link Pure ILP model Use pure ILP model to embed proposed VNs.
bandwidth
Yang [18](2016) CPU, link bandwidth, node Pure ILP model Proposed an exact VNE algorithm (ILP-LC) that considers node
location location constraints and aims to minimize the cost of substrate

network while maximizing VNR acceptance ratio.

Hu [19](2014) Processing capacity, link

bandwidth model

Enhanced path-based milp

Developed a novel VNE framework that decomposes the embedding
process into subproblems, leading to a more efficient and scalable
solution.

Masti [20](2012) CPU, link bandwidth

Simulated annealing

Proposed a simulated annealing algorithm for VN reconfiguration to
balance the load across the substrate network, thereby reducing
peak node and link load.

Zhang [21](2011) CPU, link bandwidth, node

location

Simulated annealing

Proposed FELL, a flexible VNE algorithm with guaranteed load
balancing, using simulated annealing to control the trade-off
between accuracy and running time.

Diallo [22](2014) CPU, link bandwidth

Ant Colony Optimization
(ACO) and Tabu search

Proposed a hybrid meta-heuristic approach combining ACO and TS
for VNE in multi-cloud environments, aiming to minimize the
resource supply costs of 5Ps while improving the performance and
QoS of embedded VNR fragments.

Luizelli [23](2017) CPU, link bandwidth

ILP model and VNS

Proposed a fix-and-optimize heuristic algorithm for large scale VNF
placement and chaining, combining ILP and VNS to efficiently
generate high-quality solutions.

Zhang [24](2020) CPU, link bandwidth Policy network

Proposed a VNE algorithm based on node probability using
reinforcement learning, which trains an agent to deduce the
mapping probability of each node and ranks the substrate nodes
according to this probability for embedding.

Afifi [25](2020) CPU, link bandwidth Q-learning

Proposed a reinforcement learning framework for VNE in wireless
sensor networks, using Q-learning with Greedy Epsilon or Epsilon
Decay for exploration. The framework aims to achieve good results
in terms of network delay within a few number of steps.

Zhang [26](2022) CPU, link bandwidth, node

security level

Policy network

Proposed a VNE algorithm with computing, storage, and node
security constraints for resource management and security in ICPSs
and IoT, using RL to improve performance.

3.1. Problem description

The space-based backbone network consists of multiple layers of
satellites and ground stations providing connectivity services. It can
be viewed as a hierarchical network structure consisting of geosyn-
chronous orbit, medium orbit and low orbit, with inter-satellite link
(ISL) connecting satellites in the same layer and inter-orbit link (IOL)
connecting different orbits. The satellite network has a dynamic topol-
ogy characterized by changes over time. Distinct segments of the
network exhibit varying link delay characteristics at different temporal
intervals. Consequently, VNE algorithms, originally tailored for terres-
trial networks, are not directly transferable to space-based backbone
network. To tackle this challenge, we embrace the concept of Virtual
Topology. Virtual Topology refers to an abstract representation of the
physical network, where physical resources are mapped onto virtual
entities. This abstraction allows for more flexible and efficient resource
allocation, as it decouples the physical constraints from the logical
network design. For dynamic satellite network architectures, segment-
ing the perpetually evolving discrete dynamic network topology into
discrete time slots can solve the problem of modeling difficulties. We
approximate the topology in each time slot ¢ as a static topology.
Through this approach, the resource allocation issue within space-based
backbone network is effectively reformulated into a Multi-domain VNE
problem.

3.2. Network models
In our model, the physical and virtual networks are represented as

undirected weighted graphs. This simplifies the abstraction of network
topology and resource attributes, allowing for efficient computation

and analysis of the VNE problem. The undirected nature suits sym-
metric communication channels, while weights represent key resource
attributes like CPU capacity, link bandwidth, and reliability. This ap-
proach facilitates the modeling of resource constraints and require-
ments for embedding virtual networks onto the substrate network. In
the context of the Multi-domain VNE challenge, the physical network
is conceptualized as a weighted undirected graph and represented as
GP = (NP L? A% ,A{}. NP represents the set of all substrate nodes
of the physical network, these substrate nodes include various types
of satellites, such as GEO, MEO, and LEO satellites, which form the
infrastructure of the network. L¥ represents the set of all substrate links
of the physical network. The substrate node set N* contains three types
of substrate nodes, namely GEO, MEO and LEO nodes. The substrate
link set L* contains various links including ISLs between three different
satellites and IOLs between different orbits. As for Ai,, we consider it
from CPU capacity of substrate nodes CPU,, and the pocket loss rate
PL,,. For the substrate link property Af, we consider the post-FEC
payload data rate between two adjacent nodes as the link bandwidth
BW,,;, and the probability of successful data transmission as the link
reliability R;,. Correspondingly, another weighted undirected graph
GY = {NV,LY, A%, A7}, is defined for VN, The symbols NV and L" de-
note the sets of virtual nodes and links, correspondingly. Furthermore,
A; and AE are used to represent the sets of attributes requisite for the
virtual nodes and links, respectively. The set of attributes required for
a virtual node AK contains the CPU requirements CPU,, in the VNRs.
The set of attributes required for a virtual link A[ includes the available
bandwidth requirements BW), and the Reliability requirements R,..
Specific descriptions of node and link categories are given in Table 2.

With the above conditions, The embedding process of the VNR
can be modeled as: G¥ — GF. Fig. 2 illustrates the procedure of
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Table 2
Nomenclature.
Network Notation Description Units
G" Space-based backbone network -
NF Substrate nodes (GEO, MEO, LEO satellites) -
Physical network Lr Links between physical nodes -
CPU,, CPU capacity of physical node GHz
BW,, Bandwidth of physical link Mbps
R, Reliability of physical link Percentage (%)
G¥ Virtual network -
NY Virtual nodes -
X v Virtual links -
Virtual network CPU,. CPU requirement of virtual node GHz
BW,, Bandwidth requirement of virtual link Mbps
R, Reliability requirement of virtual link Percentage (%)
VNR2
20

MEQ domain

GEO domain /

—==72_—— inter-orbit link

inter-satellite link

Fig. 2. An example of VNE.

multi-domain VNE in a space-based backbone network. The numerical
values depicted on the links represent the requisite bandwidths, while
those within the substrate nodes indicate the capacity requirements of
each substrate node. For simplicity, the required reliability requirement
attribute of the link are also omitted. The embedding procedure is
bifurcated into two distinct phases: firstly, the node embedding phase,
wherein virtual nodes are mapped onto the substrate nodes; secondly,
the link embedding phase, during which virtual links are embedded
into the paths traversing the physical network devices. It is noteworthy
that two virtual nodes originating from disparate virtual networks
may coalesce on a single substrate node. Similarly, two virtual links
from different virtual networks can concurrently utilize a substrate
link, provided specific conditional constraints are met. The conditional
constraints are described in turn below.

We define the node embedding function as F1 = {6, n/ € NV, nj.' €
NT}, and 9, ; can be formulated as:

i ' B
0, - {1, if n 1l W

0, else.

Formula (1) stipulates that n the context of the same Virtual Network
Request (VNR), each virtual node must be uniquely mapped to a
substrate node, but virtual nodes from different VNRs can share the
same underlying node. Throughout the node embedding phase, it is
imperative that each successfully mapped virtual node possesses a
computational resource demand that is either equivalent to or less than
the available computational resources of the corresponding substrate
node, as shown in formula (2):

if 6, =1, CPUy <CPU,, )

as for link embedding, we define a embedding F2 : {* 1 L”, where {*
refers to the ith link in VNR. We represent the embedding process as

function F2 = {¢;| I € LV,!j € L'}, where ¢;; can be formulated as:

L if vtk
by ={ e @

0, else.

analogous to the node embedding procedure, each virtual link that is
eligible for mapping onto a substrate link should adhere to correspond-
ing criteria, and there are similar constraints in terms of link bandwidth
and reliability:

if ¢y =1, BWyy < BWp, )

lf (‘b”' =1, Rr:' = R;j-'e (5)

for link reliability, we consider the packet loss rate at the node level,
where each node represents a satellite. This decision is based on empir-
ical observations from a confidential project under a research institute
of the China Electronics Technology Group. Specifically, in this project,
the satellite exhibited a packet loss rate, despite having a mechanism
to repair a 2% packet loss rate. This real-world phenomenon led us
to include the node packet loss rate as a factor in our modeling. We
suppose a network link consists of the n] to the n substrate node
and the packet loss rate of each substrate node nf is PL ». Then the
reliability of the whole link can be expressed as: '

J

Ry = [Ta-PLy. (6
k=i

any path p* € PF consists of one or more substrate links, each of which

is equivalent to constructing a physical path in a serial mode. Then the
path reliability is expressed in formula (7).

PP
Rr = H Re. (7

IPEpP
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when it is a single-hop link, which means that only one link is in the
path, then the path reliability at this point is equivalent to the reliability
of that link R;» which can be expressed by the formula (6).

3.3. Evaluation indicators

3.3.1. Average node utilization

For evaluating the average utilization of nodes, in order to make
the computational model more representative to reflect the overall
workload of nodes, this study only considers the core index of CPU
computing resource utilization of nodes, expressed as:

>N CPUF1(n?)
ANU=" 1 ®)

>3 cpu,
NI‘ &

3.3.2. Average link utilization

The average link utilization differs from the node utilization in that
it considers both the bandwidth of the link and the packet loss rate.
Packet loss rate can be categorized into two types, source packet loss
rate and transmission packet loss rate. The packet loss in transmis-
sion occupies part of the link bandwidth. Therefore, the average link
utilization can be expressed as:

v y
H E,«L& BW}fPZUf)RUf,m
ALU = : .

9
E,pr BW

in formula (9), to facilitate the calculation, we set the percentage
of source packet loss and transmission packet loss for each link to
a fixed value. p denotes the percentage of successfully transmitted
packets after considering the source packet loss rate, i.e., the effective
transmission rate. Ro gny denotes the reliability of the substrate link #,
which is mapped by the ith virtual link 7.

3.3.3. Revenue-cost ratio

The revenue-cost ratio is a classic evaluation metric in VNE prob-
lems, which incorporates revenue and cost. The concepts of cost and
revenue are not considered separately in our experimental evaluation,
as our main focus is on the combined revenue. The revenue-cost ratio
is a key measure of our algorithm’s performance, which combines
information from both cost and revenue dimensions. We use this ratio
as an evaluation metric rather than costs and revenues alone because
it provides a more comprehensive picture of the economic benefits and
resource utilization efficiency of the VNE process.

The revenue generated is intrinsically linked to the CPU and band-
width demands of the VNR. Consequently, a formula representing this
revenue can be derived from the resource requirements of a successfully
allocated VNR at a given time point r:

NY il
RevG¥.)=a) CPU,y +8 > BW. (10)
"1; lrl'

t )
in formula (10), « and § are balancing factors between CPU resources
and bandwidth resources. In practice, the balancing factor should be
set to the service provider’s price.

Every deployment of a VN necessitates the allocation of requisite
resources from the underlying physical network to support the cor-
responding bearer. In this context, the present paper defines the cost
associated with deploying a VN as the cumulative expense incurred by
the physical network in accepting and operating each VNR.

NV v
. v = , , u
Cost(G" 1) =« E. CPU"IL + 4 ; BW}; Hup(fj). (11)
" 5

H oy(!j’) represents the count of hops within the physical path allocated
to the underlying physical network by the virtual link. The revenue
function only considers the CPU and link bandwidth requirements of

the VNR, the cost function also needs to consider the number of hops
in the physical path. This reflects the resource consumption required
to actually deploy the virtual network in the physical network. It
reflects not only the performance of the algorithm in terms of resource
utilization efficiency, but also the advantage of the algorithm in terms
of economic efficiency. The concept of long-term average revenue is
formally articulated as the asymptotic limit of the ratio of total revenue
to the time span T, as T approaches positive infinity, expressed as
follows:

T V
Rev(G" ,t
Rev = .ilim % (12)

analogous to Rev, the long-term average cost is articulated in the
following manner:

>r, Cost(G" 1)

Cost = li (13)
o J]—nn:o T
The expression for the revenue-cost ratio is as follows:
T Neld
_ Rev(G" 1)
R/C = lim Zig Rev(@.0) (14)

7= ¥ Cost(GY,1)

3.3.4. VNR acceptance
In alignment with the definition provided in [30], the acceptance
rate for VNRs is defined as follows:

T
VNR|,

AR = lim —}:f:"l lace,
7 B VN Rlgr

in formula (15), |V N R| acc represents the quantity of VNRs that have

been successfully mapped onto the physical network. |V NR|arr de-
notes the aggregate count of all arriving VNRs.

(5]

4. DRL and LS in space-based backbone networks

This section is dedicated to an in-depth exposition of the algorithmic
modeling. We have developed a framework centered around a policy
network. This framework enables an agent to extract feature matrices
from the physical network, encapsulating comprehensive details of the
network topology, node attributes, and other pertinent information.
Utilizing these features, the policy network is designed to generate
the embedding probabilities for the substrate nodes. Concurrently,
a local search mechanism is incorporated to enhance the resource
allocation strategy. Leveraging the probability distribution generated
by the policy network, local search operations are conducted within
the immediate neighborhood. This process aims to further refine and
optimize the initial output results (see Fig. 3).

4.1. Feature extraction

There are very many attributes of the substrate nodes, for which we
have selected a few important attributes as extracted features.

« Node CPU capability: Node CPU capacity refers to the remaining
computational capacity of the substrate node itself and is a factor
of the node’s own capacity. Expressed in formula (16).
CPU(n") = CPU,p—

NV
E CPU, F1(n},n).
"IJ

(6)

where F l(nj’, n") represents the function value of the virtual node
n; embedded in the substrate node n”.

Node communication capability: The communication capacity of
a substrate node is quantified as the aggregate of the available
bandwidth across all substrate links directly interconnected with
the substrate node. This metric effectively mirrors the node’s com-
munication capability. Define I” @n” as the substrate link /” that is
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Fig. 3. An example of two-stage training process.

directly connected to the substrate node »”. The communication
capacity of the node is then mathematically represented by the
following formula:

COM(n*) = E BW,,—
Vit @ne
v 17

> > BWu F2(I},1").

virn [

Node reliability capability: The reliability of individual substrate
links is subject to variation. Consequently, the reliability capacity
of a node can be defined as the average reliability of all substrate
links that are directly connected to it, as detailed in formula (18).

REL(w") = % (18)
where Deg(n?) denotes the degree of the substrate node n?, which
is defined as the count of links that are directly connected to this

particular substrate node.

In fact, there are more node attributes that can be extracted, and
while extracting more node-related attributes will make the results
more accurate, it will also increase the complexity of the program. Our
purpose at the beginning is to use the solution obtained through the
policy network as the initial solution for local search, so we only need
that the quality of the initial solution is not too low, and obviously, the
extraction of the three features is enough to satisfy this criterion.

after extracting these feature attributes, we normalize them to be
bounded within the range of 0 and 1 using Min-Max Normalization,
then get the feature vector v; of the ith node features:

v; = (CPU(n}),COM(n), REL(n}))". 19)

The substrate node feature matrix, denoted as M, is formulated by
concatenating the feature vectors corresponding to all the substrate
nodes:

M, =(vy,0g,...,0,)". 20$)

within this matrix, each row corresponds to the feature vector of a
specific substrate node.

4.2. Policy network

The policy network employed in our study bears resemblance to
the frameworks presented in [31,32], comprising an input layer, a
convolutional layer, and a Softmax layer. Our primary objective in
this work is to investigate the impact of incorporating a local search
mechanism into the VNE process. To isolate the effects of this addition,
we opted to maintain the same policy network structure as in our
previous work [32]. However, a notable divergence in our approach is
the incorporation of filters for substrate nodes within the local search.

This modification stems from our hypothesis that certain substrate
nodes, despite not meeting the embedding constraints but exhibiting
higher embedding probabilities, have a greater degree of correlation
with their neighboring substrate nodes. Such substrate nodes, therefore,
warrant further exploration in subsequent steps of the algorithm.

* Input layer: Calculate the feature matrix M, and subsequently
transmit it to the policy network.

Convolutional layer: In the convolutional layer, the convolutional
kernels execute convolution operations on the feature matrix,
aiming to evaluate the available resources of each substrate node.
The activation function corresponding mathematical expression is
delineated as follows:

h; = ReLU(w, - v; + b,), (21)

Softmax layer: Normalize the vector representing available re-
sources for each substrate node, ascertained via convolution, to
deduce the embedding probability of that specific substrate node.
This process is mathematically articulated in the formula (22):
e

==

T @
The probability vector of candidate substrate nodes P is obtained
after Softmax layer:

P = (p1: 035+ Pn)- (23)

Reward function: The reward function provides a focus for rein-
forcement learning to evaluate performance, guiding the intelligence
to continuously learn and optimize the strategy in the direction of the
set goal. In this paper, we use the revenue-cost ratio of mapping a single
VNR as the mapping reward for that VNR:

Rev(GY,|VNR|)
Reward = Cast(GY,|VNR|) ’maPPEd (24)
0 ,else
where Rev(G",|VNR|) is the revenue in a single VNR, similarly,
Cost(GY, |V NR|) is the cost in a single VNR.

4.3. Neighborhood selection

For the VNRs in our study, the requisite number of substrate nodes
is established within a range of 2 to 7. Additionally, we set the initial
neighborhood range RA,,, to 3, defined as the neighborhood N(n/,3)
of substrate node n{ as the set of all substrate nodes that are not more
than 3 substrate nodes away from n/.

N(n!.3)= {nj.'| dis(n’,n}) < 3} (25)

Fig. 4 presents a straightforward example illustrating a substrate node’s
neighborhood range. In this instance, the neighborhood range is seg-
mented into four distinct layers, with the respective neighborhood



P. Zhang et al

@ the i” substrate node

Fig. 4. Four-level neighborhood range of the ith substrate node.

ranges RA being 0, 1, 2, and 3, progressing from the innermost to
the outermost layer. Practically, it is feasible for a substrate node to
concurrently exist within multiple levels of another substrate node’s
neighborhood.

Should the current neighborhood exceed the number of substrate
nodes necessitated by the VNR, an adaptive reduction of the neigh-
borhood is implemented. Moreover, a decay factor & is established
to progressively diminish the neighborhood in proportion to the in-
creasing number of training iterations. This concept is mathematically
expressed as follows:

n-T
RArurr = LRAr'nr'r * ETJ (26)

in formula (26), ¢ is between 0 and 1, n and N are the current training
number as well as the total training number, respectively. where T is
a positive integer indicating that the neighborhood range was kept at
RA,,;, for the first T training sessions.

To enhance the quality of the solution, it is posited that the initial
solution derived from policy network is of reasonable quality. Con-
sequently, minor adjustments are made to the probabilities of each
substrate node within the solution that falls in the neighborhood. The
specific mathematical formulation is as follows:

P = p, — oDST(n}) + nEC(n}) + ADC(n}) (27)

in formula (27), the terms DST(n{), EC(n}), and DC(n{) respectively
signify the average distance to other substrate nodes, eigenvector cen-
trality, and degree centrality. The expressions for these parameters are
delineated as follows:

P
E;}, hops(np‘rr:"}

_ (28)
DST(n?) = |N(n"y|+1
E:;{M”) EC[":‘J
EC(n") = — : X (29)
DC(nP) = %"f’ (30)

within this context, N(n?) refers to the set of virtual nodes embedded
onto the substrate nodes n”. hom(np,nf) indicates the number of hops
from substrate node n” to node nf. Furthermore, M(n*) is defined as the
set of nodes that are directly connected to node »*, and m denotes the
total count of substrate nodes.

Upon concluding the node search iterations within the specified
neighborhood, a revised candidate node probability vector, denoted as
P"" is derived.

4.4. Training process

In this study, we employ a gradient-based strategy to train the node
policy network. The output nodes’ probability vectors are subsequently
refined through local search, aiming to enhance the quality of the
solution space. The training methodology is detailed in [Algorithm 1].

Algorithm 1 Training process.

Input: G*,GY, e, RA,,;,. epochNum, Training set;
Output: Policy Network »";

1: while i € epochNum do

2 for vnr € VNRs do

3 for n* € var do

4: M re a;

5 for n € G* do

6 v; = (CPU(}),COM(n})

REL(n))";

7 M; < M;+uv;

8: end for

9: Calculate the probability P;
10: Calculate the current range RA,,.;
11: Select the top RA,,,, nodes Ny, with

the highest probabilities;
12: for n € N, do
13: forr=RA,,, to0 do
14: for nf € N(n},r) do
15: p?"w =p; - cDST(n?)+
qEC(n;’) + ADC(H?);

16: end for
17: r==
18: end for
19: end for
20: e-Greedy select node in P"%;
21: Update the G°;
22: end for
23: BEFS link map for vnr;
24: if mapped then
25: Calculate reward and gradient;
26: end if
27: Update parameters in o";
28:  end for
20: i+ +;

30: end while

[Algorithm 1] describes the training process of VNE. First, the
input and output parameters of the algorithm are defined, including
the physical network, the set of virtual network requests, the decay
factor, the initial neighborhood range, the number of training rounds
and the final output of the trained policy network. For each VNR
denoted by vnr, the algorithm iterates over all its virtual nodes n®.
For each virtual node, the algorithm first initializes an empty fea-
ture matrix M ,. Then, it iterates over all nodes n} in the physical
network, computes the feature vector v, for each node, and adds it
to the feature matrix. Next, the algorithm calculates the embedding
probabilities P for each physical node based on the feature matrix
and determines the current neighborhood range RA_,, based on the
current training epoch. The algorithm selects the top RA,,,, nodes Ny,
with the highest embedding probabilities and iterates through their
neighborhoods, gradually reducing the neighborhood range r, while
adjusting the embedding probabilities of the nodes based on their DST,
EC, and DC. Finally, the algorithm uses an e-Greedy strategy to select
nodes from the updated probability vector P*" for embedding and
updates the physical network GT. Afterwards a Breadth-First Search
(BFS) is performed on the virtual network request vnr to map the virtual
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Table 3
Experimental environment parameters.
Network Parameter Value
Substrate nodes 100
Substrate links 550
Physical network CPU resource 50 ~ 80
Node pocket loss rate 10e-2 ~ 10e—4
Link bandwidth resource 50 ~ 80
The number of VNR 2000
Training set 1000
Testing set 1000
Virtual nodes 2~7
VNRs Node connection probability 0.5
CPU resource requirement 1~ 30
Bandwidth resource requirement 1~ 30
Reliability requirement 47 ~ 99

links. If the VNR is successfully mapped, the algorithm calculates the
reward and gradient and updates the parameters of the policy network
". The entire training process continues until the specified number of
training epochs is reached.

5. Experimental results and analysis

This section commences with an introduction to the experimental
environment. Subsequently, a detailed description of the comparison
algorithm is provided. The section concludes with an analysis of the
numerical results.

5.1. Environment and parameter setting

In this study, the GT-ITM tool [33] is utilized for generating a ran-
domized network topology, facilitating the construction of a network
environment comprising 100 nodes and 550 links. Table 3 provides a
comprehensive breakdown of the attribute information for both nodes
and links. The dataset employed in our research encompasses a total
of 2000 VNRs, evenly divided between training and testing samples.
Each VNR incorporates 2 to 7 nodes, featuring a 50% probability of
inter-node linkage. For detailed insights into the physical network and
VNR characteristics, refer to Table 3.

5.2. Comparison algorithms

Regarding the choice of comparison algorithms, we chose three
algorithms to compare with ours.

*« RLVNE [31]: A Reinforcement Learning-based VNE algorithm
(RLVNE) that optimizes node and link mappings using policy
gradients. This research represents the inaugural effort to opti-
mize VNE by leveraging historical request data in conjunction
with a policy network-based reinforcement learning approach.
The methodology employs policy gradients and backpropagation
techniques to train policy networks, utilizing historical request
data as the foundational training input.

GCN [34]: A VNE algorithm that utilizes a Graph Convolutional
Network (GCN) to capture the topological features of the network.
This study introduces a VNE algorithm that uniquely integrates
DRL with an innovative neural network architecture grounded in
GCN.

HPSO [35]: A Hybrid with Particle Swarm Optimization approach
(HPSO) for VNE. This approach presents a VNE method that
innovatively incorporates simulated annealing into the Particle
Swarm Optimization algorithm. It features a distinctive parti-
cle initialization distribution strategy to effectively disperse the
particles.

5.3. Experimental results analysis

5.3.1. Training results

Validation of training results: In order to validate the appropriate-
ness of the reward configuration within the local search mechanism, an
initial uniform weight of 0.05 for each attribute in formula (27) was
set, along with a uniform learning rate of 0.005, an attenuation factor
€ of 0.9, and an initial step size T of 300. We documented the Revenue
to Cost (R/C) values across iterations, employing varying initial ranges
for the local search (3, 0). This comparative analysis aims to ascertain
the validity of the reward settings and to determine if the local search
contributes to expediting the agent’s training process.

Fig. 5 depicts the fluctuation of R/C values for different initial
ranges throughout the training period. In the early stages of training,
due to the stochastic nature of network parameters and the agent’s ini-
tial unfamiliarity with the network environment, the policy network’s
initial solutions are of moderate quality and exhibit considerable vari-
ance, even with local search intervention. As training epochs progress,
the agent gradually acclimates to the network, leading to enhanced
quality of initial solutions and reduced amplitude in local searches.
This results in a more rapid attainment of stability compared to sce-
narios without local search. Subsequently, as the neighborhood range
narrows, the disparity between the two approaches diminishes, culmi-
nating in eventual stabilization. Importantly, the overall trend of R/C
values is an upward trajectory amidst the fluctuations, indicating an
improvement in the efficiency of resource utilization. As the neigh-
borhood range narrows with further training, the disparity between
the approaches with and without local search diminishes, culminating
in eventual stabilization of the R/C values. The experimental findings
demonstrate that local search not only accelerates the agent’s training
but also enhances the stability of the training outcomes, ultimately
leading to a steady improvement in the revenue-cost ratio as the
training epochs increase.

5.3.2. Comparative experimental results

Experiment 1: Comparison of long-term average node utilization

Fig. 6 illustrates a detailed comparative analysis of average node
utilization utilizing four distinct methodologies. The long-term average
node utilization of the four algorithms shows an overall increasing
trend with time. Initially, all the algorithms have a low utilization rate,
but over time, the utilization rate gradually increases and approaches
a smooth state. The two-stage algorithm we proposed shows marked
superiority in the realm of node mapping optimization. Its initial
phase, characterized by a fixed neighborhood range, offers an optimal
exploratory trajectory, especially in scenarios where the network envi-
ronment is not yet well-understood, thus facilitating a rapid increase
in node utilization. A comprehensive quantitative evaluation indicates
that our method achieves a higher node utilization rate than GCN
by 20.11%, RLVNE by 37.14%, and HPSO by 37.19%. Experiment 2:
Comparison of long-term average link utilization

Fig. 7 provides a comparative evaluation of average link utilization
utilizing four different methodologies. The long-term average link uti-
lization of the four algorithms also shows an increasing trend over time.
It can be seen that our algorithm shows the most significant increase
and reaches a relatively high point in the second half of the graph,
showing a more stable high utilization. Our method, which prioritizes
link reliability during the mapping process, demonstrates a notably
higher link utilization rate. This improvement can be attributed to the
superior quality of our node mapping approach. A thorough analysis of
the data reveals that our approach achieves an increase in link utiliza-
tion by 5.94% compared to GCN, 9.85% over RLVNE, and 15.33% over
HPSO. Experiment 3: Comparison of long-term revenue-cost ratio

Fig. 8 delineates the trend in revenue-cost ratios for the four eval-
uated methods, where each exhibits a declining trajectory prior to
achieving stability. The trends of the long-term Revenue-Cost Ratio
(R/C) of the algorithms over time show some differences. Our algorithm
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shows significant stability and superiority, especially in the middle and
late stages of training, where the R/C ratio increases and stabilizes. In
contrast, the R/C ratio of the RLVNE algorithm fluctuates but generally
stays in a more stable interval. The GCN algorithm rises faster in the ini-
tial stage and then stabilizes, while the R/C ratio of the HPSO is always
at a low level with little change. Notably, our methodology registers
a marginally superior revenue-cost ratio, surpassing GCN by 1.31%,
RLVNE by 1.48%, and HPSO by 4.40%. Experiment 4: Comparison of
VNR acceptance ratio

Fig. 9 showcases the trend in VNR acceptance ratios across all
algorithms under consideration. We can observe an overall decreasing
trend in the VNR acceptance rate of various algorithms. Nonetheless,
our algorithm consistently maintains a relatively high acceptance rate
and outperforms the other algorithms even if it declines in the long-
term trend. In contrast, the RLVNE algorithm suffered a significant
decline over time, which may point to the instability of its performance
in specific cases. The other two algorithms-GCN and HPSO-although
the decline trend is less drastic, their acceptance rates are significantly
lower than those of our algorithm. It is observed that our method and
RLVNE demonstrate comparable acceptance rates, both outstripping
GCN by 2.34% and HPSO by 4.45%.
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6. Conclusion and future work

This research introduces a novel two-stage algorithm that synergizes
DRL with LS for the purpose of VNE. Our findings highlight the signif-
icance of integrating lightweight learning intelligence into traditional
methodologies as a critical strategy for crafting robust and scalable net-
work optimization algorithms. It is, however, pertinent to acknowledge
that neighbor selection and definition are inherently problem-specific,
leading to solutions that may not be universally applicable. Looking
ahead, our research will pivot in two principal directions. Firstly, we
aim to adapt this method for more sophisticated neighborhood configu-
rations, addressing more complex network challenges like modulation
formats and spectrum allocation in Elastic Optical Networks, and the
optimization of Service Function Chains. Secondly, we endeavor to
explore the potential of utilizing a DRL agent to supplant manual neigh-
borhood scoring rules. This would enable the agent to autonomously
determine the direction and assessment of neighborhoods, thereby
striving to develop a methodology with broader applicability.
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