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Abstract

Improving the operational efficiency of data center has always been an impor-
tant direction for the development of ICT. In this paper, we apply two-sided
matching decision-making process in game theory to traffic scheduling problem
in data center network. From the perspective of matching between flow and
path, the traffic scheduling is properly arranged. We first propose and model
the path-flow matching problem, considering the preference ordering, then for-
mulate the problem as a multiobjective optimization problem with the target
to ensure the stability and satisfaction from the matching scheme, and design
a preference-based path-flow ordering method Extended PIAS, and finally pro-
pose a lightweight scheduling algorithm LinkGame based on multiobjective evo-
lutionary algorithm. Compared with the previous scheduling methods (ECMP,
Hedera, and Fincher), experiment results demonstrate that LinkGame can
simultaneously consider the stability and satisfaction of the matching results,
with improved bandwidth utilization and flow completion time.

1 INTRODUCTION

Data centers play a significant role in Big data, Internet of Things, and Cloud computing. In order to provide users with
high-quality cloud services, some large Internet companies, eg, Microsoft, Google, Amazon, and Alibaba, have built a
great many data centers around the world. According to Synergy Research,1 there were 430 hyperscale data centers (with
50 000 to 100 000 servers) in the world in 2018. Within the data center, tens of thousands of servers are connected with
high-bandwidth (10 to 100 Gbps) and low-latency (10 to 100 μs) data center network. Therefore, the data center network
acts as a network infrastructure, carrying the most advanced information and communication technologies. In order to
save costs, data centers prefer to use inexpensive switches to build networks.2 How to make full use of abundant network
resources in data center network has always been a problem for data center operators. Other than this, there are many
latency-sensitive applications running in the data center, like e-commerce retail, web search, and social networking. User
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requests for these latency-sensitive applications need to be responded as quickly as possible. In order to provide better
services, data center traffic scheduling is extremely important and necessary.3

Currently, data centers use Equal-Cost MultiPath (ECMP)4 as the basic load balance routing protocol. The traditional
ECMP-based load balancing method ensures the equalization of different path utilization rates in the network by uni-
formly distributing the data flows to different transmission paths. ECMP does not consider the impact of long and short
flows on network load balance.5 Delay-sensitive short flows tend to be queued after long flows and cannot be effectively
forwarded in time.6 In addition, ECMP cannot detect network congestion. The mechanism that assigns flows to different
paths by hashing or polling may result in congested links become more congested. In summary, the task of data center
network traffic scheduling is to make appropriate arrangements for flows and paths. This arrangement can be very similar
to the market matching problem in economics. Therefore, in this paper, we try to use the research method of economics
to solve the traffic scheduling problem in data center network, for example, two-sided matching algorithm.

Two-sided matching decision is an important content in game theory.7 It studies how to find the best matching sugges-
tion for two-sided matching participants relying on the preference information provided. Two-sided matching participants
are finite and disjoint. In the two-side matching decision process, one matching participant usually gives preference order-
ing information for the other relative participant. Common preference ordering information includes strong preference
order (eg, better), weak preference order (eg, not inferior to), indifference preference order (eg, equivalent), and missing
preference order (eg, not known). The main research of two-sided matching decision-making issues include marriage
matching and employee matching.

The traffic scheduling problem in the cloud data center network meets the basic form of two-sided matching decision.
Paths and flows can be thought of as the participants. The requirements of the flow (eg, flow completion time (FCT),
and transmission rate) and the state of the path (eg, remaining bandwidth) are the basic information for the preference
ordering. Network decision-maker (usually SDN controller or load balancer) designs appropriate traffic delivery schemes
based on the preference ordering. We can refer to the problem of two-sided matching of paths and flows in a cloud data
center network as a path-flow matching problem.

At present, most of the researches on two-sided matching solves the matching problem based on strong preference
ordering or indifference preference ordering and pays attention to two-sided stability matching. However, the matching
scheme usually is stable but not optimal. In a cloud data center, obtaining a stable traffic scheduling is not the only goal
that operators expect. Operators prefer to get a scheduling that is optimal. Therefore, the goal of the path-flow matching
problem can be described as seeking a matching solution that combines stability and satisfaction.

Motivated by the aforementioned analysis, the two-sided matching method in game theory is applied to the traffic
scheduling of the data center network. In this paper, Section 2 summarizes the related work to data center network
traffic scheduling and two-sided matching. Section 3 analyzes the matching relationship in data center network traffic
scheduling problem and proves the feasibility of applying two-sided matching theory to data center network. Section 4
proposes and models the path-flow matching problem, considering the preference ordering for data center network, and
designs a preference-based path and flow ordering scheme Extended PIAS. Section 5 proposes a matching model, solving
algorithm LinkGame, which can simultaneously consider the stability and optimization of the path-flow matching results.
Section 6 presents the simulation experimental results and discussion. Section 7 concludes the whole paper and points
out the future work.

2 RELATED WORK

Currently, data center network traffic scheduling can be divided into three categories: centralized control,3,8-10 distributed
global congestion-aware,11-13 and distributed local stateless.14,15 These papers take FCT or bandwidth utilization as the
optimization goal and study the congestion sensing mechanism and deployment location. Designing efficient and scalable
flow scheduling algorithms and deploying them are also the goal of these papers. These works remind us not only to pay
attention to the implementation mechanism but also to study the theoretical feasibility of the scheduling algorithm.

Zhang et al16 described subcarrier assignment problem for wireless networks as a many-to-many matching games,
which reminds us that game theory, stable matching, and two-sided matching have been widely used to solve resource
allocation and management problems in wireless networks. At the same time, there are some solutions to apply game
theory to resource management and traffic scheduling in data center network. Therefore, the use of two-sided matching
can better solve the data center network traffic scheduling problem.

Xu et al17 proposed Anchor, which is the first work to use the stable matching for resource management in the Cloud.
Anchor used the stable matching framework to decouple policies from mechanisms when mapping virtual machines
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to physical servers. Wang et al18 used the stable matching theory for the SDN controller assignment in the data center
network and formulated SDN controller assignment problem as a stable matching problem with transfers. Hosseini et al19

introduced a developed model based on the game theory for identifying vulnerable data centers in cloud computing. In
particular, they also presented a measure of the degree of vulnerability of data centers in cloud computing network. These
three works used game theory for data center resource management, which reminds us whether we can use matching
theory for traffic scheduling problem.

Zhang et al20 used the stable matching for the data center network elephant flow scheduling and proposed the Fincher
algorithm. Fincher transformed the elephant flow scheduling problem into a matching problem between flow and switch,
creatively using the available storage space of the switch as a consideration for path allocation. However, the stable match-
ing solution obtained by the Fincher algorithm is not necessarily optimal. This work prompted us to use the two-sided
matching considering the preference ordering to find the optimal solution for traffic scheduling.

Abououf et al21 proposed to use the Gale-Shapley matching game selection to allocate multiple workers to multiple
tasks based on the preferences of both the tasks and workers. The matching result relying on the satisfaction from both
parties is better than relying on stability. Although this paper is not a paper in the field of networking, it inspired us to
consider the importance of satisfaction and stability for two-sided matching problem.

Liu et al22 established three private link sets for three types of flows in data center network and proposed a
mix-flow scheduling scheme DRL-Flow based on deep reinforcement learning. The three flow-scheduling strategies
were priority-based allocation for mice flows, stable matching-based allocation for elephant flows with unknown sizes,
and proportion-based allocation for elephant flows with known sizes. DRL-Flow used the idea of matching in different
situations, which adds complexity to the actual deployment.

The two-sided matching problem can ultimately be regarded as a multiobjective optimization problem (MOP), which
can be solved by heuristic algorithm or evolutionary algorithm.

Zeng et al23 jointly considered and formulated switch activation and flow routing as an integer linear programming
problem and proposed a heuristic algorithm to deal with its high computational complexity. Extensive simulation-based
evaluations are conducted to validate the high efficiency of our algorithm.

Wang et al18 proposed a hierarchically two-phase algorithm for dynamic SDN controller assignment in data center
networks and integrated key concepts from both matching theory and coalitional games to solve it efficiently.

Bastam et al24 used a linear programming to define the problem statement and then modeled the problem as a path
based multicommodity flow. Then, a suitable iterative algorithm is utilized to quickly converge subproblem solutions
leading to an answer to the problem. As a result, the proposed method serially yields an optimum solution, which takes
significantly shorter time to reach than that of the generic (the LP model that is not decomposed) approach.

3 MATCHING IN DATA CENTER NETWORK

3.1 Equivalent link
Data center network mostly adopts a layered architecture. Typical architectures include Fat-Tree,25 Helios,26 BCube,27 and
more. In these architectures, switches are divided into edge layer, aggregation layer, and core layer according to different
functions and performances.

Figure 1 shows a typical Fat-Tree architecture. Sixteen servers are linked to the edge switches, which is the bottom layer
of the network. The second layer is composed of the aggregation switches, and the top layer is 4 core switches.

In a fat-tree network, all switch IP addresses are related to network topology information.28 All edge and aggregation
layer switches have a two-stage forwarding table. All core switches only need to maintain four forwarding rules. For
example, Figure 1 lists the forwarding tables of the core switch 10.4.1.1, the aggregation switch 10.0.2.1, and the edge
switch 10.2.0.1. In Fat-tree architecture, the special numbering method and forward table for switches facilitate load
balancing.

In data center network, there are large number of optional paths from a source server to a destination server. These
optional paths generally have the same cost metric in the routing table of the switch. Therefore, switches typically use
ECMP mechanisms (IP 5-tuple hashes) to spread traffic across different optional paths.29

The concept of an equivalent link is defined here: for two directed links L1 → M1 and L2 → M2 (L1 and L2 are switches
at the beginning of the directed link, M1 and M2 are switches at the end of the directed link), if L1 and L2 are in the
same layer, M1 and M2 are also on the same layer. For any one flow, both links can be used to carry the flow, or neither
can be used to carry the flow. The two links are mutually equivalent. It should be noted that the equivalent links are not
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FIGURE 1 Fat-tree architecture and key
switch forwarding table

necessarily identical. If the two links have different capacities but meet the aforementioned definitions, they should also
be considered as equivalent links because the cost metrics of the path selections represented by different links in the switch
routing table remains unchanged. For a flow from server S3(10.0.1.2) to server S9(10.2.0.2), E2(10.0.1.1) → A1(10.0.2.1),
and E2(10.0.1.1) → A2(10.0.2.2) are equivalent link in the upward direction (the direction in which the lower layer switch
forwards to the higher layer switch).

The key of data center network traffic scheduling is to distribute traffic to these equivalent links as evenly as possible,
which is extremely similar to two-sided matching in game theory.

3.2 Path-flow matching problem
Two-sided matching decision is extremely important in game theory. According to the number of matching objects, it can
be divided into 1-1 matching, 1-n matching, and m-n matching. Traditional research issues include marriage matching,30

medical residency matching,31 partner matching,32 and venture capital matching.33 Scholars have proposed two-sided
matching algorithms for solving different matching problems, such as Gale-Shapley algorithm,34 Hospital-Resident
algorithm,35 and RANDBRK algorithm.36

The matching of paths and flows is also a two-sided matching process. For example, in a data center network, ECMP
hash defects can cause a link overload, so traffic needs to be evenly distributed across all paths. Therefore, we can get
the path-flow matching problem. The research content of path-flow matching problem is how to establish the matching
relationship between flow and path to get the most satisfactory and stable routing scheme.

Unlike the traditional m-n matching problem, the path-flow matching does not have any prior knowledge about pref-
erence ordering in the matching process, for example, how many flows a path should match. Therefore, the path-flow
matching problem is a dynamic special m-n matching problem. Path-flow matching not only pursues the stability of
the matching scheme but also pays more attention to the satisfaction from the matching scheme. In addition, path-flow
matching comes with a number of constraints, which makes the problem solving difficult and challenging.

4 PATH-FLOW MATCHING MODEL

Assume that the set of paths is P = {p1, p2, p3, … , pm}, where pi represents the ith path can carry traffic and i = 1, 2, … ,m.
The set of flows waiting to be scheduled is F = { f1, f2, f3, … , fn}, where fj represents the jth waiting flow and j = 1, 2, … ,n.
Each path consists of several links. Each flow is identified by 5-tuple: source/destination IP, source/destination port
number, and transport protocol.

The number of flows that path pi expects to match is ci,
∑m

i=1 ci = n, and ci is not greater than the maximum number of
flows that the path pi is allowed to carry. The number of paths that the flow fj expects to match is 1. Preference ordering
of path to flow is Ri = 𝑓vi(1) ○ 𝑓vi(2)...○ 𝑓vi(n−1) ○ 𝑓vi(n), where 𝑓vi(1), 𝑓vi(2), … , 𝑓vi(n) ∈ F and vi(1), vi(2), … , vi(n) ∈ [1,n].
𝑓vi(1) means that flow 𝑓vi(1) is in first. Preference ordering of flow to path is O𝑗 = pu𝑗 (1) ○ pu𝑗 (2)...○ pu𝑗 (m−1) ○ pu𝑗 (m), where
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FIGURE 2 Path-flow matching considering the preference
ordering in data center network

pu𝑗 (1), pu𝑗 (2), … , pu𝑗 (m) ∈ P and uj(1),uj(2), … ,uj(m) ∈ [1,m]. pu𝑗 (1) means that path pu𝑗 (1) is in first. ○ represents the
relationship between paths and flows. Preference ordering Ri and Oj should be a satisfactory to unsatisfactory ordering.

According to the actual situation of the network, the element relationship ○ in the preference ordering set Ri and Oj
mainly has the following forms.

• 𝑓vi(1) ≻ 𝑓vi(2): For the path pi, the flow 𝑓vi(1) is superior to the flow 𝑓vi(2). That is to say, compared to the flow 𝑓vi(2), the
path pi is more suitable to carry the flow 𝑓vi(1).

• pu𝑗 (1) ≻ pu𝑗 (2): For the flow fj, the path pu𝑗 (1) is superior to the path pu𝑗 (2). That is to say, compared with pu𝑗 (2), the path
pu𝑗 (1) can better satisfy the requirements of the flow fj for bandwidth, delay, packet loss, etc.

• 𝑓vi(1) ≺ 𝑓vi(2): For the path pi, the flow 𝑓vi(1) is inferior to the flow 𝑓vi(2).
• pu𝑗 (1) ≺ pu𝑗 (2): For the flow fj, the path pu𝑗 (1) is inferior to the path pu𝑗 (2).
• pu𝑗 (2) ↔ pu𝑗 (3): For the flow fj, the path pu𝑗 (2) is equivalent to the path pu𝑗 (3).
• 𝑓vi(2) ≽ 𝑓vi(3): For the path pi, the flow 𝑓vi(2) is better or equivalent to the flow 𝑓vi(3).
• pu𝑗 (3) ≽ pu𝑗 (4): For the flow fj, the path pu𝑗 (3) is better or equivalent to the path pu𝑗 (4).
• ⊖𝑓vi(4): The path pi cannot carry the flow 𝑓vi(4).
• ⊖pu𝑗 (5): For the flow fj, the path pu𝑗 (5) is unreachable or cannot meet its requirements for bandwidth, delay, packet loss,

etc.
For example, R1 = 𝑓5 ≻ 𝑓3 ≻ 𝑓1 ≽ 𝑓2 ⊖ 𝑓4 represents the preference ordering of f1, f2, f3, f4 and f5 for path p1. f5 orders

first, with the highest satisfaction from p1. Meanwhile, p1 cannot carry the flow f4.
As shown in Figure 2, we call the two-sided matching between the path set P and the flow set F as a path-flow matching.

The result of path-flow matching is to achieve the matching between path and flow.
According to the definition of two-sided matching, we can get the definition of path-flow matching.

Definition 1. Path-flow matching is defined as mapping 𝜇: P ∪ F → P ∪ F. For ∀pi ∈ P,∀fj ∈ F, 𝜇 satisfies the
following conditions.

1. 𝜇( pi) ∈ F ∪ pi. If 𝜇( pi) = pi, the match fails, which means that the path pi does not match the appropriate flow.
2. 𝜇( fj) ∈ P ∪ fj. If 𝜇( fj) = fj, the match fails, which is not allowed in path-flow matching.
3. If 𝜇( pi) = fj and 𝜇( fj) = pi, ( pi, fj) is a matching pair of path-flow matching.
4. 𝜇(pi) ∩ 𝜇(pk) = ∅, i ≠ k.
5. |𝜇| = max{m,n}.
6. 𝜇( fj) is noninfective and surjective, so that all flows can be scheduled.

4.1 Preference ordering
In order to realize the process of the game in traffic scheduling, path-flow matching model needs to order all flows and
paths. The purpose of preference ordering is to obtain a preference matrix by describing all paths and flows.

For path pi, all flows in the network are divided into two types: flows that can be carried and flows that cannot be
carried. The flows that cannot be carried is mainly due to the unreachable route, which is represented by ⊖𝑓vi( 𝑗) in the
preference ordering. For example, in Figure 1, the flow fj (10.0.1.2, 10.2.0.2, 60546, 80, TCP) is a flow that can be carried
by the path pi (10.0.0.1 → 10.0.2.1 → 10.4.1.1 →10.2.2.1 →10.2.0.1).

The ordering Ri of individual preferences depends on the path pi having a good understanding of the flows it can carry.
Most previous proposals, such as PDQ,37 pFabric,38 and PASE,39 assumed prior knowledge of accurate flow information,
eg, flow sizes or deadlines. However, such prior knowledge of flow is difficult to obtain in real network. Filling the QoS
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FIGURE 3 Classification and factors of
preference ordering in path-flow matching

marking and priority with the packet header extension field is the most ideal solution. The controller can determine the
preference ordering based on the values of the extension fields. However, it requires the server or network proxy to have
the corresponding encapsulation capabilities, which is not possible in some data center networks.

Preference ordering can also be achieved using port number or flow type. Different applications have different trans-
mission requirements for FCT and bandwidth. Communication between different servers often uses sockets to mark
different flows, so the port number can be used as the identity of the flows. Through the value of the port number field,
the controller can complete the path-to-flow preference ordering. Since the port number of a certain service may change
in practical applications, the accuracy of ordering by port number is not high.

Similar to Ri, for Oj, not all paths can carry flow fj. A path that cannot carry flow fj is represented by ⊖pu𝑗 (i). We use the
remaining bandwidth of the link to order the paths, which can carry flow fj. In addition, the buffer queue length of the
switch, which the flow passes through, is also recommended as the basis for ordering.20 Although delay jitter is the most
direct factor for FCT, it is not suitable as the preferred basis for preference ordering due to the difficulty of end-to-end
measurement.

Figure 3 shows a summary of the influencing factors of Ri and Oj.
In conclusion, the flow-to-path preference ordering Oj is relatively easy to obtain, but the path-to-flow preference

ordering Ri is more difficult to obtain. Section 4.2 introduces a path-to-flow preference ordering method.

4.2 Extended PIAS preference ordering
The calculation of the path-to-flow preference ordering matrix Ri is more complicated. Inspired by PIAS,40 we designed a
flow preference ordering matrix Ri calculation scheme called Extended PIAS, using the flow table counter in the existing
Openflow protocol. The Extended PIAS follows the Shortest Job First principle and does not require flow prior information
of the flow and can balance the fairness of long and short flows. Compared with PIAS, the basic idea of Extended PIAS is
to transfer the work done by the terminal or switch to the controller, which can minimize the impact on the terminal.

PIAS leverages multiple priority queues available in existing switches to implement multiple level feedback queue
(MLFQ). Packets in different queues of MLFQ are scheduled with strict priority. However, the shortcoming of PIAS is that
the ordering of the flow by the switch requires a large amount of threshold control message information, which increases
the network load.

Extended PIAS transfers the flow ordering work, which should have been done on the switch to the controller. Con-
troller periodically sends an OFPT_STATS_REQUEST message to the OpenFlow switch for obtaining statistic result about
the flow table on the switch. By comparing the change values of the latest flow table matching statistical results, the con-
troller classifies the corresponding flows. Extended PIAS just cares about the variation of flow table matches and does
not care about the value of historical matches, thus achieving the fairness to long flow and short flow. The flow priority is
positively correlated with the variation of the flow matching result. The more severe the flow change, the higher the flow
priority.

As shown in Figure 4, Extended PIAS can order flows according to the changes of the flow table matching. Based on
the results of statistics, the controller calculates the variation of the flows corresponding to the different flow table items.
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FIGURE 4 Extended PIAS preference ordering

No. 3 flow increases steeply, so it has the highest priority. During the same period, No. 2 flow has almost no new packets,
so it has the lowest priority.

4.3 Satisfactory two-sided matching
The traffic scheduling in the data center not only pursues the stability of the solution but also expects to obtain an optimal
solution. We refer to the optimal stable scheduling scheme as a satisfactory two-side matching scheme.

According to preference ordering Ri and Oj, we can establish the preference ordering weight matrix R = [rij]m×n and
O = [oij]m×n. Since the operation of the weight matrix is easier than the operation of the preference ordering matrix in
the calculation process, the path-flow matching model uses the weight matrix to solve the model in the latter calculation
process. rij represents the satisfaction value of pi for fj. oij represents the satisfaction value of fj for pi. The higher the
preference ordering, the larger the satisfaction value.

Definition 2. For path-flow matching 𝜇, if ∃a, b ∈ [1,n]; ∃c, d ∈ [1,m], where 𝜇( fa) = pc, 𝜇( pc) = fa, 𝜇( fb) =
pd, 𝜇( pd) = fb does not let

rad + rbc ≤ rac + rbd (1)

oad + obc ≤ oac + obd (2)
exist at the same time. 𝜇 is a satisfactory two-side matching.

Definition 3. If satisfactory two-side matching 𝜇 does not let

rad ≤ rac (3)

rbc ≤ rac (4)

oad ≤ oac (5)

obc ≤ oac (6)
exist at the same time. 𝜇 is a stable two-sided matching.

Theorem 1. If a satisfactory two-sided matching 𝜇 is stable, then 𝜇 may be the optimal two-sided matching.41

Proof. The optimal two-sided matching scheme of path-flow matching problem must be satisfactory and stable. Sat-
isfactory matching schemes are often the most basic solutions to the problem. If a satisfactory two-sided matching 𝜇

is stable, 𝜇 must be a solution in the optimal solution space.

Definition 4. For satisfactory two-sided matching 𝜇1 and 𝜇2, if

1. ∀𝑓i ∈ F, 𝜇1(𝑓i) = p𝑗 , 𝜇2(𝑓i) = pk, oi𝑗 ≽ oik, and ∃ fl ∈ F, 𝜇1( fl) = pq, 𝜇2( fl) = ps, olq ≻ ols,
2. ∀p𝑗 ∈ P, 𝜇1(p𝑗) = 𝑓i, 𝜇2(p𝑗) = 𝑓k, oi𝑗 ≽ ok𝑗 , and ∃ pt ∈ P, 𝜇1( pt) = fq, 𝜇2( pt) = fs, oqt ≻ ost,

then 𝜇1 is Pareto dominance than 𝜇2.

Definition 4 means, compared to 𝜇1, 𝜇2 has no better path-flow matching pair.

Definition 5. If there is no other matching scheme Pareto dominance than the matching scheme 𝜇, then 𝜇 is the
Pareto effective matching scheme of path-flow matching problem, that is, the matching scheme 𝜇 is the optimal
satisfactory two-sided matching.



8 of 18 TAN ET AL.

5 PATH-FLOW MATCHING PROBLEM SOLVING

Obviously, the path-flow matching problem is an MOP.42 Both parties (paths and flows) involved in the matching process
want to maximize their satisfaction without affecting the stability of the matching results. Therefore, this section gives
the multiobjective optimization model of the path-flow matching problem and the solution algorithm LinkGame.

5.1 Multiobjective optimization model
Path-flow matching is an MOP. We introduce the 0-1 variable xmn, where xij = 0 indicates that pi and fj cannot form
a matching relationship, and xij = 1 indicates that pi and fj can form a matching relationship, then ( pi, fj) becomes a
matching pair in the matching scheme 𝜇.

According to Section 4, we can build the following multiobjective optimization model:

max z1 =
m∑

i=1

n∑
𝑗=1

xi𝑗 · oi𝑗 , i = 1, 2, … ,m; 𝑗 = 1, 2, … ,n (7)

max z2 =
m∑

i=1

n∑
𝑗=1

xi𝑗 · ri𝑗 , i = 1, 2, … ,m; 𝑗 = 1, 2, … ,n (8)

s.t.
m∑

i=1
xi𝑗 ≤ n, 𝑗 = 1, 2, … ,n (9)

n∑
𝑗=1

xi𝑗 = 1, i = 1, 2, … ,m (10)

xi𝑗 +
∑

k∶oik≽oi𝑗

xik +
∑

k∶rk𝑗≽ri𝑗

xk𝑗 ≥ 1 (11)

xi𝑗 = 0, 1. (12)
In the aforementioned equations, Equation (7) is the flow satisfaction objective function, and Equation (8) is the path

satisfaction objective function. Equation (9) ensures that the number of flows that can be carried by each path can-
not exceed the maximum number of flows, and Equation (10) makes each flow get only one matching from all paths.
Equation (11) is the matching stable constraints. A complete xmn can be called a feasible solution Z. The meaning of this
multiobjective optimization model is to find an optimal matching scheme Zopt.

Theorem 2. For any one path-flow matching 𝜇, there must be an optimal two-sided matching scheme.

Proof. Path-flow matching 𝜇 is a multiobjective 0-1 integer programming problem with m × n variables, which can
produce up to 2(m×n) feasible solutions. Since⊖pj and⊖fi, the solution space is much smaller than 2(m×n). It means that
the feasible solution of path-flow matching 𝜇 is finite. According to the previous research results,43 the 1-1 two-sided
matching must exist a stable matching solution. In other words, if the feasible domain composed of constraints is
not empty and both Equation (7) and Equation (8) have an optimal solution, path-flow matching 𝜇 has an optimal
solution.

Based on Equations (7) and (8), we can construct the objective function of the MOP as follows:

max Z(x) = (z1(x), z2(x))T , x ∈ Ω, (13)

where Ω is the feasible solution space.
Path-flow matching problem model is a multiobjective 0-1 integer programming model. We establish model evaluation

indicators by membership function method. It is assumed that zmax
1 and zmax

2 are the single objective optimal values of
Equation (7) and Equation (8) when only the targets z1 and z2 are considered, and zmin

1 and zmin
2 are the worst values of

the single target, respectively. The membership functions 𝜌z1 and 𝜌z2 of two single targets can be expressed as follows:

𝜌z1 =
zmax

1 − z1

zmax
1 − zmin

1
(14)
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𝜌z2 =
zmax

2 − z2

zmax
2 − zmin

2

. (15)

Let 𝛼 and 𝛽 are the weights of the targets 𝜌z1 and 𝜌z2 , respectively. 0 ≤ 𝛼, 𝛽 ≤ 1, and 𝛼 + 𝛽 = 1. Define the decision
preference function V, ie,

V = 𝛼 · 𝜌z1 + 𝛽 · 𝜌z2 . (16)
The decision preference function V reflects the importance of satisfaction between the two parties in the matching

process. We will detail how decision preferences are determined in Section 5.2.

5.2 LinkGame algorithm
Evolutionary algorithm is a swarm intelligence search method for solving MOPs. Decomposition-based multiobjective
evolutionary algorithm (MOEA/D) is a new decomposition algorithm that combines mathematical programming meth-
ods with evolutionary algorithms to solve MOPs.44 Compared with other MOEAs, MOEA/D has obvious advantages in
solving complex MOPs.

MOEA/D uses a decomposition strategy to transform an MOP into a number of single-objective optimization sub-
problems, and then uses evolutionary algorithms to simultaneously solve these single-object subproblems. The objective
function of each subproblem is an aggregate function for each objective function, and the population of the algorithm
consists of the current optimal solution of each subproblem. The optimization of each subproblem is done by an evolu-
tionary operation between the adjacent subproblems. The neighbor relationship between subproblems is determined by
the distance between the weight vectors of the subproblems. The two subproblems with similar weight vectors are similar.

In this paper, we take an MOEA/D based on uniform subproblem weight vector design for solving the path-flow
matching model.45 This algorithm is called LinkGame.

LinkGame uses a uniform design method to set the weight vector of each subproblem decomposed by MOEA/D,46 so
that the algorithm can search all regions evenly at the initial stage and improve the possibility of finding the Pareto optimal
solution. For each Pareto optimal solution x∗ of a multiobjective problem, there must be a weight vector 𝜆 such that x∗
corresponds to an optimal solution to the single-objective problem. In addition, LinkGame ensures that the matching
result is a stable matching scheme with the high satisfaction of both parties. Finally, the optimal solution in the satisfactory
two-sided matching solution is output.

We assume that the population size in LinkGame is N, then 𝜆 = 𝜆1, 𝜆2, 𝜆3, … , 𝜆N−1, 𝜆N is a uniformly distributed set of
subquestion weight vectors. N is the population size. As a result, we decompose multiobjective evolution problem into N
single-objective optimization problems. 𝜆i can be expressed as follows:

𝜆i =
(
𝜆i

1, 𝜆
i
2
)
=
( i − 1

N
,

N − i + 1
N

)
, i = 1, 2, … ,N. (17)

Therefore, we can use the Tchebycheff method to split a multiobjective problem into N single-objective problems.47

Equation (17) is equivalent to Equation (16). The ith single-objective optimization problem can be expressed as follows:

min gi(x|𝜆i, z∗) = max
{
𝜆i

1
||𝑓1(x) − z∗1|| , 𝜆i

2
||𝑓2(x) − z∗2||} , (18)

where the neighbor of the weight vector 𝜆i is the weight vector in 𝜆 closest to 𝜆i. LinkGame optimize these N subprob-
lems simultaneously in an evolutionary process. Particularly, in Equation (18), each generation of population consists of
the current optimal solution of each subproblem, and the optimization of each subquestion only requires its neighbor
information. z∗ is the reference point for the whole problem, which represents the estimate of the optimal solution. In
path-flow matching problem, z∗ can be expressed as follows:

z∗ = (max z1,max z2). (19)

max z1 is the maximum preference value of the flow and max z2 is the maximum preference value of the path. They can
be calculated in the following way:

z∗ =

( m∑
i=1

max{oi1, oi2, … , oin},
n∑

𝑗=1
max{r1𝑗 , r2𝑗 , … , rn𝑗}

)
, i = 1, 2, … ,m; 𝑗 = 1, 2, … ,n. (20)
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In each iteration, the LinkGame needs to save the following three necessary information:

1. the current optimal solution for each subproblem: x1, x2, … , xN;
2. the objective function value corresponding to each optimal solution: FV1,FV2, … ,FVN;
3. the optimal objective function solution currently found: z = (z1, z2)T .

As shown in Figure 5, LinkGame algorithm consists of four steps, namely, initialization operation (IO), breeding
operation (BO), correction operation (CO), and update operation (UO).

The IO mainly completes the random generation of the population x1, x2, … , xN and calculates the reference point z∗
according to the two preference matrices R and O.

The BO picks out two parents from all the populations, denoted as r1 and r2, respectively. Both r1 and r2 belong to
x1, x2, … , xN. BO takes a crossover operator for r1 and r2 to generate child y, and then mutates y with the mutation

FIGURE 5 Flowchart of LinkGame
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probability p to produce a new y. BO uses the DE as a crossover operator.48 Since the two parents r1 and r2 have some
characteristics of the optimal solution, we cross the two parents and generate new individuals while retaining these
characteristics.

Since the path-flow matching problem has some constraints, the CO judges whether the newly generated y is a feasible
solution according to the constraint condition. If not, CO corrects y, so that y becomes a feasible solution.

The UO updates the necessary algorithm variables, such as the current optimal solution and neighbor state.
Parameters that affect the efficiency of the algorithm include population size N, mutation probability p, and iterations

number I. In addition, the DE crossover operation has some parameters, but we think these parameters should use the
default values, so we did not study the impact of these parameters on the performance of LinkGame.

5.3 Analysis of LinkGame algorithm
The performance of LinkGame algorithm affects resource occupancy and efficiency, so we need to analyze the time
complexity, space complexity, and performance of the LinkGame algorithm.

In terms of time complexity, LinkGame is O(n). Therefore, as the scale of the problem increases, the execution efficiency
of the LinkGame algorithm will not decrease much.

In terms of space complexity, the input of LinkGame is N matrices(population), and each matrix is m*n. LinkGame
operates on these N matrices, so the input (population) of the algorithm is the most space-consuming part of the algorithm.
In the execution process, the algorithm does not occupy a lot of space except for storing the optimal solution and a small
amount of data temporarily occupied by the memory.

There are three main parameters that affect the performance of the algorithm, they are population size N, mutation
probability p, and iterations number I. The more the population size N, the greater the ability of the algorithm to search
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the solution space, and the greater the probability of finding the optimal solution, but the larger the memory space.
In our simulation process, because the machine performance is not very strong, we recommend population size N =
500. The effect of the number of iterations I is to force the algorithm to stop when the algorithm cannot satisfy the stop
condition. Therefore, the number of iterations I is related to the running time of the algorithm. Since the controller has
strict requirements on algorithm execution, such as scheduling every 10 seconds, we must set the number of iterations
based on experience. In our experiment, the number of iterations I is 500, which can meet the requirements of scheduling
every 10 seconds. The number of iterations I depends on the actual situation, such as scheduling period and machine
performance. The mutation probability p reflects the ability of the algorithm to jump out of the current search space,
typically 0.1.49

6 DEPLOYMENT AND EVALUATION

In order to verify the performance of the proposed path-flow matching model and LinkGame algorithm in this paper, we
deployed path-flow matching model in a simulated environment, and evaluated and compared LinkGame with ECMP,
Hedera,3 and Fincher.20

As shown in Figure 6, The deployment of the path-flow matching model requires four functional components, namely,
the receiving module, path-flow ordering module, path-flow matching module, and flow rules generation module. The
receiving module preprocesses the information collected by Floodlight. The path-flow ordering module orders the paths
and flows according to link status and traffic changes. The path-flow matching module uses LinkGame algorithm to
solve matching results. The flow rules generation module generates a traffic scheme based on the calculated optimal
satisfaction matching result. Needless to say, four path-flow matching modules are based on the built-in modules of
Floodlight. These modules are LinkDiscoveryManager module, FloodlightProvider module, TopologyService module,
and DeviceManagerImpl module.

For traffic information collection, there are three methods of long flow detection. They are active monitoring, pas-
sive statistics, and sampling.29 Considering performance, accuracy, and complexity, we chose OFPT_STATS_REQUEST
protocol to collect traffic information, which is an active monitoring approach.

ECMP, Hedera, Fincher, and LinkGame are different in traffic scheduling. ECMP uses equal probability multipath
forwarding for all flows. Hedera adopts ECMP for short flows and special scheduling for long flows. Fincher is similar
to Hedera, but uses stable matching algorithm to schedule long flows. LinkGame distinguishes long and short flows
according to the variation of flow and applies path-flow matching model according to the preference order. All three
schemes except ECMP regenerate the traffic scheduling scheme every 10 seconds.3 It should be specially stated that, in all
experiments, the parameters of LinkGame are as follows: the number of iterations is 500, the population size is 500, and
the mutation probability is 0.1. The reason for choosing these parameter settings is to meet the scheduling requirement
of 10 seconds under the experimental hardware conditions.

Similar to previous research,3,20 Mininet generates traffic using probabilistic model, random model, stag(p,q) model,
and stride (i) model, respectively. All traffic models are implemented by using iperf in Mininet.

Under the probabilistic model, a server sends data (eg, initiates an UDP requests) to another server with a specified
probability.

Under the random model, any server randomly sends data to other servers with equal probability.

FIGURE 6 Path-flow matching architecture
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Under the stag( p, q) model, a server sends data to another server under the same edge switch with the probability of p,
and to another server at the same pod with the probability of q, and to other switches of the network with the probability
of (1 − p − q).

Under the stride(i) model, the mth server only sends data to the (m + i)th server.
The performance of entire network can be measured by two metrics: the FCT and throughput. The FCT is described

as the interval between the start time stamp ts when the first packet of a flow leaves the source server and the end time
stamp te when the last packet of the flow arrives at the destination server.50 The ideal FCT is the best achievable where
only the service times of the intermediate nodes and the transmission time of the packets are considered.

We have evaluated and compared the performance of LinkGame, ECMP, Hedera, and Fincher on standardized average
bisection bandwidth and FCT. The detail simulation parameters can be found in Table 1.

Figure 7 shows the overall standardized average bisection bandwidth performance of ECMP, Hedera, Fincher, and
LinkGame. In most of traffic models, LinkGame has the best performance. Under the stag(1, 0) model, all three schemes
except LinkGame have achieved almost the same results. The reason is that this traffic model does not generate traffic
across core and aggregation switches. ECMP, Hedera, and Fincher use the ECMP method for traffic scheduling. In other
words, Hedera and Fincher are equivalent to ECMP in stag(1, 0) model. LinkGame's traffic scheduling strategy is global
and can achieve better bandwidth utilization in this model.

Long flow FCT is an important network performance indicator in data center network, which reflects the ability of the
network to schedule long flow. In order to test the impact of different schemes on the long flow FCT, we set all long flow
sizes in the network to 100 MB, and all short flows sizes to 50 KB. Figure 8 shows the long flow FCT of four schemes.
LinkGame algorithm has achieved the best performance in all traffic models. In most scenarios, LinkGame can complete
long flow transmission in about 22.3 seconds to 27.4 seconds. In the stag(1,0) model, LinkGame performance is degraded,
but the long flow FCT is still shorter than the other three schemes.

Figure 9 demonstrates the improvement performance of standardized average bisection bandwidth of LinkGame.
LinkGame improves bandwidth utilization by 8.3% to 36.9% compared to ECMP, 6.1% to 17.3% compared to Hedera, and
1.4% to 13% compared to Fincher.

Parameters Value
Number of core switches 4
Number of aggregation switches 8
Number of edge switches 8
Number of servers 16
Max packet size 1500 Bytes
Link bandwidth 10 Mbps
Long flow size 100 KB-2000 MB
Short flow size 1 KB-100 KB
Number of long flow: Number of short flow 1:9

TABLE 1 Simulation parameters

FIGURE 7 Performance of standardized average bisection bandwidth of different traffic scheduling schemes under different traffic models
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FIGURE 8 Performance of long flow FCT of different traffic scheduling schemes under different traffic models

FIGURE 9 Improvement performance of standardized average bisection bandwidth of LinkGame compared to ECMP, Hedera and Fincher

FIGURE 10 Improvement performance of long flow FCT of LinkGame compared to ECMP, Hedera, and Fincher

Figure 10 demonstrates the improvement performance of long flow FCT of LinkGame. LinkGame decreases FCT by
9.8%-56.3% compared to ECMP, 7.6%-44.1% compared to Hedera, and 2.1%-22.6% compared to Fincher.

In order to observe the bandwidth utilization in more detail, we measured the bandwidth utilization of some links
between core layer switches and aggregation layer switches by adjusting Iperf rate in Mininet. Figure 11 shows the results
of link utilization in different traffic modes, where the abscissa represents the link number between core switch and aggre-
gation switch. For example, A1-C1 represents the link from the core switch A1 to the aggregation switch C1. LinkGame
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(A) (B)

(C) (D)

(E) (F)

FIGURE 11 Link utilization of different traffic scheduling schemes under different traffic models. A, Prob.; B, Rand.; C, Stag(1,0); D,
stag(0.3,0.3); E, stride(1); F, stride(4)

algorithm has better link utilization than ECMP, Hedera, and Fincher. ECMP selects paths in random, and multiple
long flows collide on the same link to form a hotspot path. Therefore, the link utilization of ECMP is low. Hedera and
Fincher also adopted the ECMP scheme for short flow, so the utilization rate is not much improved compared with ECMP.
LinkGame adopts matching to process long flow and short flow and uses traffic change rate to indicate the importance of
flow. Therefore, there is no hotspot path problem like ECMP in LinkGame scheme.

Figure 12 shows the packet loss rate results of four schemes. In order to be convincing, we set the link loss rate in all
schemes to 1% and use iperf to record the network packet loss rate. Simulation results show that LinkGame has the lowest
packet loss rate. ECMP lacks congestion awareness, which may increase network congestion and further lead to network
packet loss. Moreover, ECMP cannot avoid packet loss due to link congestion and switch congestion. Both Hedera and
Fincher schedule on the long flow, which can avoid the long-term occupation of network resources caused by long flow,
and reduce FCT while reducing packet loss rate. Hedera has packet loss due to switch congestion. However, we use a
single queue cache for the switch in Mininet to simulate a shared memory switch for Fincher. Therefore, Fincher has the
lower packet loss rate than Hedera. It is worth noting both LinkGame and Fincher schemes perform well under the prob.,
rand., stage(0.3,0.3), and stride(4) models.
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FIGURE 12 Performance of packet loss rate of LinkGame compared to ECMP, Hedera, and Fincher

7 CONCLUSIONS

In this paper, we analyzed in detail the process of applying the two-sided matching model, considering the preference
ordering to data center traffic scheduling. We first propose and model the path-flow matching problem consider-
ing the preference ordering by giving the formulation description of the path-flow matching problem, then design a
preference-based path-flow ordering scheme Extended PIAS, and finally propose the algorithm LinkGame. LinkGame is
an MOEA, which can simultaneously consider the stability and optimization of the matching results. Compared with the
ECMP, Hedera, and Fincher, LinkGame performs extremely well in both bandwidth utilization and long flow FCT.

The key component of the path-flow matching model is preference ordering. In addition to the Extended PIAS men-
tioned in this paper, the various ordering methods summarized in Figure 3 of this paper deserve to be studied. Therefore,
designing a more efficient ordering method is the research direction to improve the matching model effect, which is our
future work.
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