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Abstract—Genetic Algorithm (GA) is an effective method for 
solving Traveling Salesman Problems (TSPs), nevertheless, the 
Classical Genetic Algorithm (CGA) performs poor effect for 
large-scale traveling salesman problems. For conquering the 
problem, this paper presents two improved genetic algorithms 
based on clustering to find the best results of TSPs. The main 
process is clustering, intra-group evolution operation and inter-
group connection. Clustering includes two methods to divide the 
large scale TSP into several sub-problems. One is k-means, and 
the other is affinity propagation (AP). Each sub-problem 
corresponds to a group. Then we use GA to find the shortest path 
length for each sub-problem. At last, we design an effective 
connection method to combine all those groups into one which is 
the result of the problem. we trial run a set of experiments on 
benchmark instances for testing the performance of the proposed 
genetic algorithm based on k-means clustering (KGA) and 
genetic algorithm based on affinity propagation clustering 
(APGA). Experimental results demonstrate their effective and 
efficient performances. Comparing results with other clustering 
genetic algorithms show that KGA and APGA are competitive 
and efficient.  

Keywords-large-scale traveling salesman problem; genetic 
algorithm; clustering; k-means; affinity propagation 

I.  INTRODUCTION 
Traveling Salesman Problem (TSP) is the problem of 

searching for the shortest Hamiltonian tour through all the 
cities. TSP is a well-known NP-hard problem. It has many real 
world applications [1,2], such as planning scheduling, logistics 
distribution, computer networks and VLSI routing. Different 
types of TSPs have been studied by the researchers during the 
recent years [3-6].  

     The problem of TSP can be described as follows: there are 
N cities and distance matrix ( )dij N N

D
×

=  which gives 

distances from one city to another city. The objective of the 
TSP is to find the shortest route from all of the paths. A route 
can be seen as a cyclic permutation of cities from 1 to N  if 

( )iπ is defined as the city visited in step ,  1, , .i i N=   The cost 
of a route is  as follows: 
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If the distance satisfies ij jid d=  for 1 ,i j N≤ ≤ , this case 
is the symmetric TSP. 

      TSP can be modeled as a weighted graph. Each vertex 
represents a city and each edge connects two cities. The 
weight of the edge represents the distance between the two 
connected cities. Now a TSP problem is actually a 
Hamiltonian cycle, and the optimal TSP path is the shortest 
Hamiltonian cycle. 
      Algorithms for solving the TSP can be summarized in two 
classes, exact algorithms and heuristic algorithms. The exact 
algorithms make sure that the final solution is optimal. Branch 
and cut algorithm is a typical example in this class [7,8]. The 
problem with these algorithms is that they are quite complex 
and are very demanding in computer power [9]. Since the 
introduction of simulated annealing [10] and tabu search [11] a 
breakthrough was obtained with the introduction of 
metaheuristics which have the possibility to find their way out 
of local optima. In the last twenty years, a number of nature 
inspired or swarm intelligence methods, like ant colony 
optimization [12,13], particle swarm optimization [14] and 
genetic algorithms [15,16] have been proposed for the solution 
of the TSPs. 

Genetic Algorithm (GA) is an effective approach for 
searching optimal solution by simulating natural evolution 
process for problems with huge search, such as TSP. The aim 
of GA is to obtain an approximate solution in a large-scale 
problem through a couple of genetic operations like selection, 
crossover, and mutation. Compared with other exact search 
algorithms, its advantages mainly performs that the search is 
conducted using information of a population of tours instead 
of just one tour [5]. Aside from the foregoing content, the GA 
evaluates the quality of the individual by the numerical value 
of fitness function, reduces the risk of being immersed in a 
local optimum when using heuristic algorithms. 

      Though GA is an effective method for solving TSPs, 
nevertheless, with the number of the traveled cities grows, 
classical genetic algorithm performs poor effect. In order to 
make the problem of TSP easier and solve the large scale 
TSPs efficiently, this paper presents two improved genetic 
algorithms with clustering, named KGA and APGA. First, 
KGA and APGA use clustering method to divide a large scale 
TSP into several sub-problems, each sub-problem corresponds 
to a cluster. K-means and affinity propagation clustering 
methods are respectively adopted in KGA and APGA. Then, 
we use GA to find the shortest Hamiltonian cycle for each 
cluster. All these clusters can be handled parallel. At last, we 
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design effective connection method to combine several 
clusters into one for integral optimization with the aim of 
shortening the whole tour. 
The rest content of this paper is organized in this way: Section 
II presents two clustering methods including k-means and 
affinity propagation (AP). Section III describes the proposed 
genetic algorithm based on k-means clustering (KGA) and 
genetic algorithm based on affinity propagation clustering 
(APGA). Then in Section IV, experiments and comparing 
results are provided. Finally, we conclude this paper in Section 
V. 

II. CLUSTERING METHODS 

A. K-means Clustering 
K-means is a popular unsupervised learning algorithm that is 
used in a wide range of applications, such as data mining, 
because of its simplicity [17]. The idea is to divide a set of  
samples into K groups (clusters), where each object has 
characteristics that is similar to that of another object. We 
choose the most distant distance within the cluster and mark it. 
       The algorithm needs to produce a selection of K  initial 
center points of the cluster ( 1, , )iC i K=  randomly. We 
called it center. Firstly, calculate the distances from each 
object to the other cluster centers and divide the object into a 
cluster whose distance is the smallest. Secondly, according to 
the last step, recalculate every clusters center. We repeat these 
two steps iteratively until the centers no longer change, to 
achieve convergence stability. We use the Euclidean distance 
to compute the distance between vertices and clusters. The 
purpose of the clustering is to optimize the following function: 
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where K  is the number of clusters, N  is the number of 
vertices(or cities), jx is the coordinate of vertex j , iC  is the 
coordinate of the cluster i  and iG  is the group of vertices 
belonging  to cluster i . 
        This algorithm can obtain the shortest squared distance 
by moving the cluster centers around in space. The new center   
of a cluster is continuously updated according to all the 
vertices assigned to it. The formula for calculating the centers 
is as follows: 
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where | |iG is the number of vertices contained in the cluster i . 
Algorithm 1 presents the pseudo code for K-Means 

clustering algorithm.  
1  Set the K cluster centers randomly; 
2  repeat 
3         for each vertex do 
4               Calculate distance measure to each cluster; 
5               Assign it to the closest cluster; 
6         end 
7       recompute the cluster centers positions; 
8  until stop criteria are met; 

Algorithm 1: Pseudo code of K-Means 

B. Affinity Propagation 
Clustering method based on a measure of similarity has been 
widely used in engineering systems and in scientific data 
analysis. A common approach of clustering is to divide data 
into several sections and to find a set of centers such that the 
data points and their nearest centers have the least sum of 
squared errors. We select centers from all the actual existence 
data points and name them “exemplars”.  K-means clustering 
method uses a set of randomly selected exemplars initially, 
and then iteratively optimizes those exemplars with the aim of 
decreasing the sum of squared errors. K-means clustering 
method is quite vulnerable to the initial selection of exemplars, 
so it is usually need to optimize many times with different 
initializations and make the effort to find a good solution. 
Therefore, it only works well when the amount of clusters is 
small and situations are good that at least one random 
initialization is close to good solution. 
     Affinity propagation (AP) is quite different from K-means 
clustering [18], it needn’t to determine the number of clusters 
artificially before running the algorithm. It simultaneously 
considers all data points as potential exemplars and regards 
them as representative of each cluster. There are two types of 
message exchanged between data points in AP. It carried out 
alternately with two message passing steps to update the two 
matrices: the “responsibility” matrix and the “availability” 
matrix, and each takes into account a different kind of 
competition. Messages can be combined at any period to 
decide which points are exemplars. The “responsibility” 

( ),r i k describes the degree of point i  suitable for point k , 
that is message from i to k . The “availability” 

( ),a i k describes the degree of data point i  select the data 
point k as it’s clustering center, send the message from i   to 
k . Take into account the support from other points that point 
k  should be an exemplar. ( ),r i k  and ( ),a i k  are calculated 
using the rules: 

( ) ( ) ( ) ( )( )'

' ', , max , ,
k k

r i k s i k a i k s i k
≠

= − +             (4) 

( )
( ) ( )( )

{ }

( )( )
'

'

'

,

'

min 0, , max 0, , ,
,

max 0, , ,

i i k

i k

r k k r i k i k
a i k

r i k i k

∉

≠

    + ≠    = 
 =




   (5) 

where ( ) 2, i ks i k x x= − − . 
Detailed description of AP can refer to [19,20]. 

III. GENETIC ALGORITHM BASED ON CLUSTERING 
This paper presents two improved genetic algorithms with 
clustering, i.e., genetic algorithm based on K-means clustering 
(KGA) and genetic algorithm based on affinity propagation 
(APGA) for solving the large scale TSPs efficiently. First, 
KGA and APGA use clustering method to transform a large 
scale TSP into several small sub-problems, each sub-problem 
corresponds to a cluster. K-means and affinity propagation 
clustering methods are respectively adopted in KGA and 
APGA. Then, we use GA to find the shortest Hamiltonian 



                                                                                                                                          105

cycle for each cluster. All these clusters can be handled parallel. 
At last, we design effective connection method to combine 
several clusters into one for integral optimization with the 
objective of shortening the whole traveling route. 

A. Intra-group Evolution Operation 
The aim of the intra-group evolution operation is to find 

the shortest Hamiltonian cycle for the given vertices in each 
cluster. Genetic algorithm is an impactful technique based on 
evolution theory for problems like TSP [21]. GA is performed 
in each cluster aiming to obtain an approximate solution by a 
couple of genetic operations like selection, crossover, and 
mutation. Compared with other exact traditional search 
algorithms, its advantages mainly performs that the search is 
conducted using information of a population of cycles instead 
of just one cycle. 
      Ordinal encoding scheme is used in intra-group. Using this 
scheme, each vertex is numbered a unique integer from 1 to 
the number of vertices in this cluster. Chromosomes are 
permutations of integers, which represent the traveling paths. 
We define gene fragment as a permutation of the sequence 
numbers of vertices in a cluster. A chromosome can be 
considered as a permutation of all the gene fragments, and 
each one gene fragment represents a cluster. 

The process of the genetic algorithm used in each cluster is 
listed as follows: 

1  generate initial population randomly; 
2  Calculate fitness value and reserve the minimum; 
3  repeat 
4        Select parents for next generation; 
5        Perform the crossover operator; 
6        Perform the mutation operator; 
8  until stop criteria are met; 
9  Output the best route; 

Algorithm 2: Pseudo code of genetic algorithm used in intra-group 
 

      Genetic algorithm for solving TSP is used cluster by 
cluster. All those clusters can be handled parallel. The result 
of this step is tours 1 2, , , kT T T  for clusters 1 2, , , kG G G . 

B. Inter-group Connection 
The aim of solving TSPs is to find the shortest traveling 

tour. In the last step, what we have obtained is the shortest 
Hamiltonian cycle for the given vertices in each cluster. Then 
in this step, we need to consider how to connect all the clusters 
and obtain a whole tour. 

Connect two clusters, in other words, determine which 
edges will be deleted from the adjacent shortest Hamiltonian 
cycle among each cluster, and which edges will be linked for 
combining two adjacent clusters into one. Suppose i and j are 
two closest vertices between two clusters iG and jG . For iG , 
-1i and +1i are two adjacent vertices of i , and the same to jG , 
-1j and +1j are two adjacent vertices of j . Given iG and jG , 

in order to combine the two clusters into one, we need to 
select two vertices 'i i∗ ∈ and 'j j∗ ∈ for deleting and linking 
edges. How to select them, we refer Eq. (6): 
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where ' { 1, 1}i i i∈ − + , ' { 1, 1}j j j∈ − + . Repeat this procedure 
until all clusters are joined into one whole tour.  Fig.1 shows 
this scheme. 

 

 

 

 

 

 

 

 

 
 

Figure 1.  Process of combing clusters 

Different combing sequences among clusters will result in 
different traveling tours, searching for the shortest is our 
purpose. Therefore, when the number of clusters is large, we 
consider designing a modified genetic algorithm for integral 
optimization with the aim of shortening the whole traveling 
route. Ordinal encoding scheme is also used in the integral 
optimization. However, different from chromosomes 
representing the traveling paths, in this process, we encode 
combing sequences among clusters. In other words, we need to 
optimize the sequence of the clusters and find the best combing 
sequence. Following this sequence, the first two clusters are 
combined into one, then the new generated cluster combines 
with the third cluster, and so on, step by step. At last, all those 
clusters are joined into one tour, and the shortest whole 
traveling tour is derived. 

The whole process of the proposed algorithm is listed as 
follows: 

1  Input an TSP; 
2 K-means or AP is adopted to cluster the TSP into k sub-
problems; 
3  For each sub-problem 1 to i k= , do: 
4       repeat 
5           Select parents for next generation; 
6           Perform the crossover operator; 
7           Perform the mutation operator; 
8       until stop criteria are met; 
9       Output Hamiltonian cycle for sub-problem i ;   
10  End 
11  Seek for the best combing sequence S  with GA; 
12 Combine all those Hamiltonian cycles into one tour 
following the optimal sequence S ; 
13  Output the shortest whole traveling tour. 

Algorithm 3: Pseudo code of the proposed algorithm 

i 

j

i

i+1

i-1 j+1

j-1

i-1 

i+1

j

j+1

j-1



                                                                                                                                          106

IV. EXPERIMENTS 
In this section, we carry out extensive experiments to evaluate 
the effectiveness of both KGA and APGA, which KGA 
represents the combination of K-means clustering with genetic 
algorithm, and APGA represents the combination of affinity 
propagation clustering with genetic algorithm. We have 
applied them on the standard test instances from TSPLIB [22] 
and compare their performances. Furthermore, under the same 
conditions, we have also compared the results with those 
obtained by classical genetic algorithm (CGA) and other 
related clustered genetic algorithms. The proposed KGA and 
APGA run 20 times independently for each test instance. 
       TABLE I presents the experimental results for each 
benchmark problem and statistics for 20 independent runs, 

including the best, mean, and standard deviation (std) of the 
tour length values.  As described in TABLE I, the mean values 
obtained by KGA are respectively smaller than those obtained 
by APGA for att532, d657, rat783, u2319 and pcb3038, which 
indicates that KGA performs better than APGA on these test 
problems. Meanwhile, APGA performs better than KGA on 
the other test instances including pcb442, u2152 and rl5915.  
Generally speaking, KGA performs similar or a bit better than 
APGA in optimizing the traveling tour. However, K-means 
clustering is quite sensitive to the initial selection of centers, 
and the number of clusters needs to be set in advance. Then 
we prefer APGA for solving this kind of TSPs. 

TABLE I.  COMPARISONS OF KGA AND APGA 

Problems Optimum 
KGA  APGA 

mean min std cost time(s)  mean min std cost time(s) 
pcb442 50778 62129.1 61461.5 279.3 5.0  61955.6 61946.2 257.8 7.3 

rat575 6773 7647.09 7820.56 263.2 5.2  7814.35 7925.44 156.2 4.6 

d657 48912 56785.3 56738.2 43.5 5.1  56801.5 56784.1 47.9 8.4 

rat783 8806 9882.9 9822.0 44.6 6.6  9997.1 9934.7 39.6 10.7 

u2152 64253 75689.3 75184.4 297.4 19.5  75571.8 73825.2 1807.3 49.6 

u2319 234256 243336.3 242605.5 412.7 25.0  245704.4 249980.1 1066.5 68.9 

pcb3038 137694 159777.9 159182.2 906.7 95.2  161086.5 160284.7 1116.5 133.6 

rl5915 565530 786908.3 780619.9 7590.9 80.5  656647.9 619020.9 5895.5 188.6 

 
       Furthermore, we compare the proposed KGA, APGA with 
other related works including classical genetic algorithm 
(CGA) and Two-Level Genetic algorithm (TLGA) [3]. 
Comparisons of these four algorithms are shown in TABLE II. 
Experimental results obtained by CGA and TLGA are cited 
from [3]. 
       Except the number of evolutionary iterations, other 
parameters are the same. The results in TABLE II show that 
the effects of both KGA and APGA are much better than CGA 
and TLGA within small evolutionary iterations, especially for 
APGA. In other words, deriving an optimal tour, under the 
same other parameters, KGA and APGA need less 
computational cost than CGA and TLGA. KGA and APGA 
are efficient. Further, APGA can produce a shorter tour in less 
iteration than the other three algorithms. 
       Figure 2 shows the evolution of the tour length with the 
number of iterations on test problems. In terms of CGA, KGA 

and APGA show obvious advantages over the ordinary 
algorithm. And the APGA can obtain a superior initial 
solution. These results indicate that the algorithms based on 
clustering converge, in terms of iterations, much faster than 
CGA. In other words, KGA and APGA need fewer iterations 
than CGA for solving an TSP well. From Figure 2 and 
TABLE II, we can conclude that KGA and APGA are more 
efficient and effective than CGA and they perform well in 
getting  more reasonable tours in limited time for large TSPs. 
       Figure 3 plots the convergences of KGA with the different 
k. k is the number of clusters. It can be seen from the figure 
that with the increase of k, convergence speed of the KGA 
accelerates, and the quality of the results are improved. But 
when the number of clusters exceeds a certain value, initial 
solution of the intra-group evolution will be affected. In other 
words, the value of k depends on the scale of problem.  

 

TABLE II.  COMPARISONS WITH OTHER RELATED WORKS 

Problems 
Other research Our research 

CGA 
(Iterations=200) 

TLGA 
(Iterations=200)  KGA 

(Iterations=20) 
APGA 

(Iterations=20) 
KGA 

(Iterations=200) 
APGA 

(Iterations=200) 
pcb442 6.96*104 6.53*104 6.88*104 6.36*104 6.21*104 6.19*104 
rat783 1.25*104 1.12*104 1.13*104 1.10*104 9.98*103 9.99*103 
dsj1000 2.45*107 2.35*107 2.36*107 2.27*107 2.27*107 2.24*107 
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Figure 2. Comparisons of CGA, KGA and APGA 
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Figure 3. Comparisons of KGA with different k 

V. CONCLUSION 
       In this study, we propose two improved genetic 
algorithms based on clustering, i.e. KGA and AGA. Their 
main process is clustering, intra-group evolution operation and 
inter-group connection. First, KGA and APGA use clustering 
method to separate a large scale TSP into a number of simple 
sub-problems, each sub-problem corresponds to a cluster. K-
means and affinity propagation clustering methods are 
respectively adopted in KGA and APGA. Then, we use GA to 
find the shortest Hamiltonian cycle for each cluster. At last, 
we design an effective connection method to combine all those 
clusters into one for integral optimization with the aim of 
shortening the whole traveling route. 
       Experimental results demonstrate their effective and 
efficient performances. Comparing results with other related 
works show that KGA and APGA are prominent to provide 
reasonable results in limited iterations for TSPs. 
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