
 978-1-5090-4093-3/16/$31.00 ©2016 IEEE 103

2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)

Genetic Algorithms Based on Clustering for
Traveling Salesman Problems

Lizhuang Tan, Yanyan Tan, Guoxiao Yun, Yanna Wu

School of Information Science and Engineering
Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology

Shandong Normal University
Jinan, China

Abstract—Genetic Algorithm (GA) is an effective method for
solving Traveling Salesman Problems (TSPs), nevertheless, the
Classical Genetic Algorithm (CGA) performs poor effect for
large-scale traveling salesman problems. For conquering the
problem, this paper presents two improved genetic algorithms
based on clustering to find the best results of TSPs. The main
process is clustering, intra-group evolution operation and inter-
group connection. Clustering includes two methods to divide the
large scale TSP into several sub-problems. One is k-means, and
the other is affinity propagation (AP). Each sub-problem
corresponds to a group. Then we use GA to find the shortest path
length for each sub-problem. At last, we design an effective
connection method to combine all those groups into one which is
the result of the problem. we trial run a set of experiments on
benchmark instances for testing the performance of the proposed
genetic algorithm based on k-means clustering (KGA) and
genetic algorithm based on affinity propagation clustering
(APGA). Experimental results demonstrate their effective and
efficient performances. Comparing results with other clustering
genetic algorithms show that KGA and APGA are competitive
and efficient.

Keywords-large-scale traveling salesman problem; genetic
algorithm; clustering; k-means; affinity propagation

I. INTRODUCTION
Traveling Salesman Problem (TSP) is the problem of

searching for the shortest Hamiltonian tour through all the
cities. TSP is a well-known NP-hard problem. It has many real
world applications [1,2], such as planning scheduling, logistics
distribution, computer networks and VLSI routing. Different
types of TSPs have been studied by the researchers during the
recent years [3-6].

 The problem of TSP can be described as follows: there are
N cities and distance matrix ()dij N N

D
×

= which gives

distances from one city to another city. The objective of the
TSP is to find the shortest route from all of the paths. A route
can be seen as a cyclic permutation of cities from 1 to N if

()iπ is defined as the city visited in step , 1, , .i i N= The cost
of a route is as follows:

1

() (1) () (1)
1

 minimize
N

i i N
i

f d dπ π π ππ
−

+
=

= + (1)

If the distance satisfies ij jid d= for 1 ,i j N≤ ≤ , this case
is the symmetric TSP.

 TSP can be modeled as a weighted graph. Each vertex
represents a city and each edge connects two cities. The
weight of the edge represents the distance between the two
connected cities. Now a TSP problem is actually a
Hamiltonian cycle, and the optimal TSP path is the shortest
Hamiltonian cycle.
 Algorithms for solving the TSP can be summarized in two
classes, exact algorithms and heuristic algorithms. The exact
algorithms make sure that the final solution is optimal. Branch
and cut algorithm is a typical example in this class [7,8]. The
problem with these algorithms is that they are quite complex
and are very demanding in computer power [9]. Since the
introduction of simulated annealing [10] and tabu search [11] a
breakthrough was obtained with the introduction of
metaheuristics which have the possibility to find their way out
of local optima. In the last twenty years, a number of nature
inspired or swarm intelligence methods, like ant colony
optimization [12,13], particle swarm optimization [14] and
genetic algorithms [15,16] have been proposed for the solution
of the TSPs.

Genetic Algorithm (GA) is an effective approach for
searching optimal solution by simulating natural evolution
process for problems with huge search, such as TSP. The aim
of GA is to obtain an approximate solution in a large-scale
problem through a couple of genetic operations like selection,
crossover, and mutation. Compared with other exact search
algorithms, its advantages mainly performs that the search is
conducted using information of a population of tours instead
of just one tour [5]. Aside from the foregoing content, the GA
evaluates the quality of the individual by the numerical value
of fitness function, reduces the risk of being immersed in a
local optimum when using heuristic algorithms.

 Though GA is an effective method for solving TSPs,
nevertheless, with the number of the traveled cities grows,
classical genetic algorithm performs poor effect. In order to
make the problem of TSP easier and solve the large scale
TSPs efficiently, this paper presents two improved genetic
algorithms with clustering, named KGA and APGA. First,
KGA and APGA use clustering method to divide a large scale
TSP into several sub-problems, each sub-problem corresponds
to a cluster. K-means and affinity propagation clustering
methods are respectively adopted in KGA and APGA. Then,
we use GA to find the shortest Hamiltonian cycle for each
cluster. All these clusters can be handled parallel. At last, we

 This work is supported by the National Natural Science Foundation of
China (No. 61373081, 61170145, 61401260, 61402268, 61572298), the
Technology and Development Project of Shandong (No. 2013GGX10125),
the Natural Science Foundation of Shandong China (No. BS2014DX006,
ZR2015PF006, ZR2014FM012) and the Taishan Scholar Project of Shandong,
China.

 104

design effective connection method to combine several
clusters into one for integral optimization with the aim of
shortening the whole tour.
The rest content of this paper is organized in this way: Section
II presents two clustering methods including k-means and
affinity propagation (AP). Section III describes the proposed
genetic algorithm based on k-means clustering (KGA) and
genetic algorithm based on affinity propagation clustering
(APGA). Then in Section IV, experiments and comparing
results are provided. Finally, we conclude this paper in Section
V.

II. CLUSTERING METHODS

A. K-means Clustering
K-means is a popular unsupervised learning algorithm that is
used in a wide range of applications, such as data mining,
because of its simplicity [17]. The idea is to divide a set of
samples into K groups (clusters), where each object has
characteristics that is similar to that of another object. We
choose the most distant distance within the cluster and mark it.
 The algorithm needs to produce a selection of K initial
center points of the cluster (1, ,)iC i K= randomly. We
called it center. Firstly, calculate the distances from each
object to the other cluster centers and divide the object into a
cluster whose distance is the smallest. Secondly, according to
the last step, recalculate every clusters center. We repeat these
two steps iteratively until the centers no longer change, to
achieve convergence stability. We use the Euclidean distance
to compute the distance between vertices and clusters. The
purpose of the clustering is to optimize the following function:

 2

1 1,
minimize || ||

i

K N

j i
i j j G

f x C
= = ∈

= − (2)

where K is the number of clusters, N is the number of
vertices(or cities), jx is the coordinate of vertex j , iC is the
coordinate of the cluster i and iG is the group of vertices
belonging to cluster i .
 This algorithm can obtain the shortest squared distance
by moving the cluster centers around in space. The new center
of a cluster is continuously updated according to all the
vertices assigned to it. The formula for calculating the centers
is as follows:

1,

1
| |

i

N

i j
j j Gi

C x
G = ∈

= (3)

where | |iG is the number of vertices contained in the cluster i .
Algorithm 1 presents the pseudo code for K-Means

clustering algorithm.
1 Set the K cluster centers randomly;
2 repeat
3 for each vertex do
4 Calculate distance measure to each cluster;
5 Assign it to the closest cluster;
6 end
7 recompute the cluster centers positions;
8 until stop criteria are met;

Algorithm 1: Pseudo code of K-Means

B. Affinity Propagation
Clustering method based on a measure of similarity has been
widely used in engineering systems and in scientific data
analysis. A common approach of clustering is to divide data
into several sections and to find a set of centers such that the
data points and their nearest centers have the least sum of
squared errors. We select centers from all the actual existence
data points and name them “exemplars”. K-means clustering
method uses a set of randomly selected exemplars initially,
and then iteratively optimizes those exemplars with the aim of
decreasing the sum of squared errors. K-means clustering
method is quite vulnerable to the initial selection of exemplars,
so it is usually need to optimize many times with different
initializations and make the effort to find a good solution.
Therefore, it only works well when the amount of clusters is
small and situations are good that at least one random
initialization is close to good solution.
 Affinity propagation (AP) is quite different from K-means
clustering [18], it needn’t to determine the number of clusters
artificially before running the algorithm. It simultaneously
considers all data points as potential exemplars and regards
them as representative of each cluster. There are two types of
message exchanged between data points in AP. It carried out
alternately with two message passing steps to update the two
matrices: the “responsibility” matrix and the “availability”
matrix, and each takes into account a different kind of
competition. Messages can be combined at any period to
decide which points are exemplars. The “responsibility”

(),r i k describes the degree of point i suitable for point k ,
that is message from i to k . The “availability”

(),a i k describes the degree of data point i select the data
point k as it’s clustering center, send the message from i to
k . Take into account the support from other points that point
k should be an exemplar. (),r i k and (),a i k are calculated
using the rules:

() () () ()()'

' ', , max , ,
k k

r i k s i k a i k s i k
≠

= − + (4)

()
() ()()

{ }

()()
'

'

'

,

'

min 0, , max 0, , ,
,

max 0, , ,

i i k

i k

r k k r i k i k
a i k

r i k i k

∉

≠

 + ≠ =
 =

 (5)

where () 2, i ks i k x x= − − .
Detailed description of AP can refer to [19,20].

III. GENETIC ALGORITHM BASED ON CLUSTERING
This paper presents two improved genetic algorithms with
clustering, i.e., genetic algorithm based on K-means clustering
(KGA) and genetic algorithm based on affinity propagation
(APGA) for solving the large scale TSPs efficiently. First,
KGA and APGA use clustering method to transform a large
scale TSP into several small sub-problems, each sub-problem
corresponds to a cluster. K-means and affinity propagation
clustering methods are respectively adopted in KGA and
APGA. Then, we use GA to find the shortest Hamiltonian

 105

cycle for each cluster. All these clusters can be handled parallel.
At last, we design effective connection method to combine
several clusters into one for integral optimization with the
objective of shortening the whole traveling route.

A. Intra-group Evolution Operation
The aim of the intra-group evolution operation is to find

the shortest Hamiltonian cycle for the given vertices in each
cluster. Genetic algorithm is an impactful technique based on
evolution theory for problems like TSP [21]. GA is performed
in each cluster aiming to obtain an approximate solution by a
couple of genetic operations like selection, crossover, and
mutation. Compared with other exact traditional search
algorithms, its advantages mainly performs that the search is
conducted using information of a population of cycles instead
of just one cycle.
 Ordinal encoding scheme is used in intra-group. Using this
scheme, each vertex is numbered a unique integer from 1 to
the number of vertices in this cluster. Chromosomes are
permutations of integers, which represent the traveling paths.
We define gene fragment as a permutation of the sequence
numbers of vertices in a cluster. A chromosome can be
considered as a permutation of all the gene fragments, and
each one gene fragment represents a cluster.

The process of the genetic algorithm used in each cluster is
listed as follows:

1 generate initial population randomly;
2 Calculate fitness value and reserve the minimum;
3 repeat
4 Select parents for next generation;
5 Perform the crossover operator;
6 Perform the mutation operator;
8 until stop criteria are met;
9 Output the best route;

Algorithm 2: Pseudo code of genetic algorithm used in intra-group

 Genetic algorithm for solving TSP is used cluster by
cluster. All those clusters can be handled parallel. The result
of this step is tours 1 2, , , kT T T for clusters 1 2, , , kG G G .

B. Inter-group Connection
The aim of solving TSPs is to find the shortest traveling

tour. In the last step, what we have obtained is the shortest
Hamiltonian cycle for the given vertices in each cluster. Then
in this step, we need to consider how to connect all the clusters
and obtain a whole tour.

Connect two clusters, in other words, determine which
edges will be deleted from the adjacent shortest Hamiltonian
cycle among each cluster, and which edges will be linked for
combining two adjacent clusters into one. Suppose i and j are
two closest vertices between two clusters iG and jG . For iG ,
-1i and +1i are two adjacent vertices of i , and the same to jG ,
-1j and +1j are two adjacent vertices of j . Given iG and jG ,

in order to combine the two clusters into one, we need to
select two vertices 'i i∗ ∈ and 'j j∗ ∈ for deleting and linking
edges. How to select them, we refer Eq. (6):

{ } ' ' ' '

' '
' ' ' ',

,
, arg min

ij i j ii jj

i j
ij i j ii jj

d d d d
i j

d d d d
∗ ∗

+ − − = + − −
 (6)

where ' { 1, 1}i i i∈ − + , ' { 1, 1}j j j∈ − + . Repeat this procedure
until all clusters are joined into one whole tour. Fig.1 shows
this scheme.

Figure 1. Process of combing clusters

Different combing sequences among clusters will result in
different traveling tours, searching for the shortest is our
purpose. Therefore, when the number of clusters is large, we
consider designing a modified genetic algorithm for integral
optimization with the aim of shortening the whole traveling
route. Ordinal encoding scheme is also used in the integral
optimization. However, different from chromosomes
representing the traveling paths, in this process, we encode
combing sequences among clusters. In other words, we need to
optimize the sequence of the clusters and find the best combing
sequence. Following this sequence, the first two clusters are
combined into one, then the new generated cluster combines
with the third cluster, and so on, step by step. At last, all those
clusters are joined into one tour, and the shortest whole
traveling tour is derived.

The whole process of the proposed algorithm is listed as
follows:

1 Input an TSP;
2 K-means or AP is adopted to cluster the TSP into k sub-
problems;
3 For each sub-problem 1 to i k= , do:
4 repeat
5 Select parents for next generation;
6 Perform the crossover operator;
7 Perform the mutation operator;
8 until stop criteria are met;
9 Output Hamiltonian cycle for sub-problem i ;
10 End
11 Seek for the best combing sequence S with GA;
12 Combine all those Hamiltonian cycles into one tour
following the optimal sequence S ;
13 Output the shortest whole traveling tour.

Algorithm 3: Pseudo code of the proposed algorithm

i

j

i

i+1

i-1 j+1

j-1

i-1

i+1

j

j+1

j-1

 106

IV. EXPERIMENTS
In this section, we carry out extensive experiments to evaluate
the effectiveness of both KGA and APGA, which KGA
represents the combination of K-means clustering with genetic
algorithm, and APGA represents the combination of affinity
propagation clustering with genetic algorithm. We have
applied them on the standard test instances from TSPLIB [22]
and compare their performances. Furthermore, under the same
conditions, we have also compared the results with those
obtained by classical genetic algorithm (CGA) and other
related clustered genetic algorithms. The proposed KGA and
APGA run 20 times independently for each test instance.
 TABLE I presents the experimental results for each
benchmark problem and statistics for 20 independent runs,

including the best, mean, and standard deviation (std) of the
tour length values. As described in TABLE I, the mean values
obtained by KGA are respectively smaller than those obtained
by APGA for att532, d657, rat783, u2319 and pcb3038, which
indicates that KGA performs better than APGA on these test
problems. Meanwhile, APGA performs better than KGA on
the other test instances including pcb442, u2152 and rl5915.
Generally speaking, KGA performs similar or a bit better than
APGA in optimizing the traveling tour. However, K-means
clustering is quite sensitive to the initial selection of centers,
and the number of clusters needs to be set in advance. Then
we prefer APGA for solving this kind of TSPs.

TABLE I. COMPARISONS OF KGA AND APGA

Problems Optimum
KGA APGA

mean min std cost time(s) mean min std cost time(s)
pcb442 50778 62129.1 61461.5 279.3 5.0 61955.6 61946.2 257.8 7.3

rat575 6773 7647.09 7820.56 263.2 5.2 7814.35 7925.44 156.2 4.6

d657 48912 56785.3 56738.2 43.5 5.1 56801.5 56784.1 47.9 8.4

rat783 8806 9882.9 9822.0 44.6 6.6 9997.1 9934.7 39.6 10.7

u2152 64253 75689.3 75184.4 297.4 19.5 75571.8 73825.2 1807.3 49.6

u2319 234256 243336.3 242605.5 412.7 25.0 245704.4 249980.1 1066.5 68.9

pcb3038 137694 159777.9 159182.2 906.7 95.2 161086.5 160284.7 1116.5 133.6

rl5915 565530 786908.3 780619.9 7590.9 80.5 656647.9 619020.9 5895.5 188.6

 Furthermore, we compare the proposed KGA, APGA with
other related works including classical genetic algorithm
(CGA) and Two-Level Genetic algorithm (TLGA) [3].
Comparisons of these four algorithms are shown in TABLE II.
Experimental results obtained by CGA and TLGA are cited
from [3].
 Except the number of evolutionary iterations, other
parameters are the same. The results in TABLE II show that
the effects of both KGA and APGA are much better than CGA
and TLGA within small evolutionary iterations, especially for
APGA. In other words, deriving an optimal tour, under the
same other parameters, KGA and APGA need less
computational cost than CGA and TLGA. KGA and APGA
are efficient. Further, APGA can produce a shorter tour in less
iteration than the other three algorithms.
 Figure 2 shows the evolution of the tour length with the
number of iterations on test problems. In terms of CGA, KGA

and APGA show obvious advantages over the ordinary
algorithm. And the APGA can obtain a superior initial
solution. These results indicate that the algorithms based on
clustering converge, in terms of iterations, much faster than
CGA. In other words, KGA and APGA need fewer iterations
than CGA for solving an TSP well. From Figure 2 and
TABLE II, we can conclude that KGA and APGA are more
efficient and effective than CGA and they perform well in
getting more reasonable tours in limited time for large TSPs.
 Figure 3 plots the convergences of KGA with the different
k. k is the number of clusters. It can be seen from the figure
that with the increase of k, convergence speed of the KGA
accelerates, and the quality of the results are improved. But
when the number of clusters exceeds a certain value, initial
solution of the intra-group evolution will be affected. In other
words, the value of k depends on the scale of problem.

TABLE II. COMPARISONS WITH OTHER RELATED WORKS

Problems
Other research Our research

CGA
(Iterations=200)

TLGA
(Iterations=200) KGA

(Iterations=20)
APGA

(Iterations=20)
KGA

(Iterations=200)
APGA

(Iterations=200)
pcb442 6.96*104 6.53*104 6.88*104 6.36*104 6.21*104 6.19*104
rat783 1.25*104 1.12*104 1.13*104 1.10*104 9.98*103 9.99*103
dsj1000 2.45*107 2.35*107 2.36*107 2.27*107 2.27*107 2.24*107

 107

Figure 2. Comparisons of CGA, KGA and APGA

Pa
th

 L
en

gt
h

Pa
th

 L
en

gt
h

Pa
th

 L
en

gt
h

Figure 3. Comparisons of KGA with different k

V. CONCLUSION
 In this study, we propose two improved genetic
algorithms based on clustering, i.e. KGA and AGA. Their
main process is clustering, intra-group evolution operation and
inter-group connection. First, KGA and APGA use clustering
method to separate a large scale TSP into a number of simple
sub-problems, each sub-problem corresponds to a cluster. K-
means and affinity propagation clustering methods are
respectively adopted in KGA and APGA. Then, we use GA to
find the shortest Hamiltonian cycle for each cluster. At last,
we design an effective connection method to combine all those
clusters into one for integral optimization with the aim of
shortening the whole traveling route.
 Experimental results demonstrate their effective and
efficient performances. Comparing results with other related
works show that KGA and APGA are prominent to provide
reasonable results in limited iterations for TSPs.

REFERENCES

[1] F. Liu and G. Zeng, “Study of genetic algorithm with reinforcement
learning to solve the TSP,” Expert Systems with Applications, vol. 36,
no.3, pp. 6995-7001, 2009.

[2] G. Gutin and A. P. Punnen, The Traveling Salesman Problem and Its
Variations, Springer, 2002.

[3] Ding-Chao, Cheng-Ye, and HE-Miao, “Two-Level Genetic Algorithm
for Clustered Traveling Salesman Problem with Application in Large-
Scale TSPs,” Tsinghua Science and Technology, vol. 12(4), pp. 459-465,
2007.

[4] Zakir Hussain Ahmed, “Improved genetic algorithms for the travelling
salesman problem,” Int. J. Process Management and Benchmarking, vol.
4(1), pp. 109-124, 2014.

[5] Y. Deng, Y. Liu, and D. Zhou. “An Improved Genetic Algorithm with
Initial Population Strategy for Symmetric TSP,” Mathematical Problems
in Engineering, vol. 3, pp. 1-6, 2015.

[6] Chiranjit Changdar, G.S. Mahapatra, Rajat Kumar Pal, “An efficient
genetic algorithm for multi-objective solid travelling salesman problem
under fuzziness,” Swarm and Evolutionary Computation, vol. 15, pp.27-
37, 2014.

[7] G. Laporte, “The traveling salesman problem: an overview of exact and
approximate algorithms,” European Journal of Operational Research,
vol. 59, pp. 231-247, 1992.

 108

[8] D. Applegate, R. Bixby, V. Chvatal, and W. Cook, “Chained Lin-
Kernighan for large traveling salesman problems,” Informs Journal on
Computing, vol. 15, pp. 82-92, 2003.

[9] K. Helsgaum, “An effective implementation of the Lin-Kernighan
traveling salesman heuristic,” European Journal of Operational
Research, vol. 126, pp. 106-130, 2000.

[10] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, pp. 671-680, 1982.

[11] F. Glover, “Tabu search II,” ORSA Journal on Computing, vol. 2(1), pp.
4-32, 1990.

[12] A. Liu, Z. Deng, and S. Shan, “Mean contribution ant system: an
improved version of ant colony optimization for traveling salesman
problem,” LNCS, SEAL 2006, vol. 4247, pp.489-496, 2006.

[13] M. Dorigo, and L.M. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” IEEE
Transactions on Evolutionary Computation, vol. 1(1), pp. 53-66, 1997.

[14] E.F.G. Goldbarg, G.R. Souza, and M.C. Goldbarg, “Particle swarm
optimization for the traveling salesman problem,” EVOCOP 2006,
LNCS, vol. 3906, pp.99-110, 2006.

[15] R. Baralia, J.I. Hildago, and R. Perego, “A hybrid heuristic for the
traveling salesman problem,” IEEE Transactions on Evolutionary
Computation, vol. 5(6), pp. 1-41, 2001.

[16] H.D. Nguyen, I. Yoshihara, K. Yamamori, and M. Yasunaga,
“Implementation of an effective hybrid GA for large-scale traveling
salesman problems,” IEEE Transactions on Systems, Man, and
Cybernetics Part B: Cybernetic, vol. 37, pp. 92-99, 2007.

[17] K. Wagstaff, and C. Cardie, “Constrained K-means clustering with
background knowledge,” in The Eighteenth International Conference on
Machine Learning, 2001, pp. 577-584.

[18] Brendan J. Frey and Delbert Dueck, “Clustering by Passing Messages
Between Data Points,” Science, vol. 315, pp. 972-976, 2007.

[19] B. Hassanabadi, C. Shea, L. Zhang, S. Valaee, “Clustering in Vehicular
Ad Hoc Networks using Affinity Propagation, Original Research Article
Ad Hoc Networks,” vol. 13, Part B, pp. 535-548, 2014.

[20] Optimization of Traveling Salesman Problem Using Affinity Propagatio
n Clustering and Genetic Algorithm, vol.5, No.4, pp.239-245, 2015.

[21] M. Albayrak and N. Allajverdi, “Development a new mutation operator
to solve the traveling salesman problem by aid of genetic algorithms,”
Expert Systems with Applications, vol. 38(3), pp.1313-1320, 2011.

[22] TSPLIB, http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/, 2015

View publication statsView publication stats

https://www.researchgate.net/publication/309442000

