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A B S T R A C T

New technologies such as virtualization and Software Defined Networking (SDN) have given traditional
networks unprecedented flexibility. A Service Function Chain (SFC) formed by concatenating multiple Virtual
Network Functions (VNFs) expands network functions to meet the growing personalized network requirements
of applications. However, due to the decentralization of VNF instances and the tight cloud load, how to ensure
Quality of Service (Qos) while deploying the SFC brings new challenges. Hence, a SFC deployment strategy
based on multi-objective optimization, named MO-SACO is proposed, which regards delay optimization,
reliability assurance and cost reduction as the main objectives. Specifically, we first design a VNF aggregation
rule to handle raw SFC requests, which effectively reduces the SFC path latency and improves reliability.
Then, VNF placement and traffic routing is modeled as a computation offloading decision based on cloud-
fog-edge collaboration with the goal of target optimization according to functional, location, and resource
constraints. Finally, we also take into account the performance changes of deployed SFCs and handle non-
compliant requests in a timely manner. We conduct extensive simulations in networks of varying sizes and
the results demonstrate that the proposed MO-SACO strategy not only achieves lower latency and cost, higher
reliability compared with the state-of-the-art methods, but also has unexpected performance in terms of the
deployment success rate and node load.
1. Introduction

5G mobile technology has brought disruptive changes to the com-
munication architecture and enabled a wide range of services, including
data center monitoring and measurement, network analysis, cloud
fog edge network operation and maintenance management, massive
bandwidth, etc. Furthermore, most existing network services have strict
Quality of Service (QoS) requirements [1]. For example, intensive video
streaming services have stringent requirements for end-to-end latency
and real-time dynamics, broadband communication have to provide
sufficient bandwidth but be relaxed about latency, and text streaming
transmission such as email distribution and chat are expected to be
given higher reliability. Software Defined Network (SDN) and Network
Function Virtualization (NFV) [2] are expected to be key features
of the 5G network architecture, and are considered to be the key
guarantee for improving network flexibility and business performance.
SDN separates the data plane and the control plane, uses controllers to

∗ Corresponding author.
E-mail addresses: xiaojb@upc.edu.cn (J. Xiao), zhengjiaqi_0222@163.com (J. Zheng), wenwu@gzhu.edu.cn (W. Wen), mguizani@ieee.org (M. Guizani),

zhangpeiying@upc.edu.cn (P. Zhang), tanlzh@sdas.org (L. Tan).

realize centralized and unified management, which promotes the test
and deployment of new services. NFV decouples software and hardware
by abstracting network functions into software instances, which can
running on the general server and called Virtual Network Functions
(VNFs). VNFs can be deployed, migrated and deleted according to
actual scenario requirements to significantly reduce Operating Expendi-
tures (OPEX) and Capital Expenditures (CAPEX) [3]. Different types of
VNFs can be combined into SFCs that provide various complex network
functions [4,5]. As an important bearing form of network services,
SFCs guide traffic routing sequentially so that improving the resource
utilization potential of substrate network.

The SFC deployment mainly determines a feasible path by placing
VNFs and mapping virtual links, where physical nodes and links meet
the resource and bandwidth requests of VNFs, respectively. This process
can be optimized according to business constraints to improve the QoS
vailable online 3 June 2024
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data mining, AI training, and similar technologies.
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as well as network resource utilization, and reduce the CAPEX and
OPEX.

The service latency has always been a key research issue in service
deployment [6]. At present, the research on reducing service delay
is mainly divided into two aspects. One is to reduce the delay of
packet processing, queuing and forwarding, but this is subject to the
capacity of the cloud network and the processing power [7], speed of
the device itself. The other is to choose more reasonable physical paths
for mapping the SFC to reduce the link resource consumption and the
propagation delay so as to reduce the SFC’s overall delay [8]. In recent
years, there have also been some studies on offloading VNFs to access
networks for deployment, but these efforts either ignore the cloud-to-
access path, or do not consider the reliability and limited resources of
edge devices. The emergence of fog computing [9] provides a reference
for the above problems.

Fog computing [10] is defined as a highly virtualized computing
paradigm, it migrates cloud centralized tasks to edge devices for exe-
cution. As a distributed computing structure, fog computing performs
processing, storage and intelligent control around data devices. This
elastic structure results in fog computing combining the superiorities
of edge computing (closer to the user’s location) and cloud comput-
ing (relatively sufficient resources) [11], so it has many advantages
such as saving bandwidth resources and reducing latency. Apart from
the above attempts, research about computation offloading [12–18]
receives widespread concern, it complements fog computing technol-
ogy. However, most researches about computation offloading consider
offloading the computing services from resource-constrained devices to
the cloud computing environment. Due to the above advantages, they
should be an excellent solution for SFC deployment in terms of strict
QoS and low cost. In fact, there are few studies that deeply investigate
the rationality of service deploy strategies in mixed environments.

In critical-mission applications, reliability and server load are also
significant SFC deployment issues. Most existing works presume that
the infrastructure in an ideal state, but any physical or software failure
will cause the SFC to be interrupted. The reliability guarantee of SFC
is attributed to two types based on high reliability node selection
and backup mechanism, the former will cause the resources of low
reliability servers to be under-utilized, the latter will generate addi-
tional expenses. In addition, as the network architecture expands from
single domain to multiples, high resource occupancy often leads to
unbalanced network performance even service interruption. Maintain-
ing network load balance is beneficial to reduce service delay and
accommodate more requests.

Drawing from the analysis presented, this paper proposes a Multi-
Objective SFC deployment optimization strategy based on Service
Aggregation and Computation Offloading, named MO-SACO, which
prioritizes delay, reliability, and cost. MO-SACO performs different
functions in the SFC preprocessing phase and deployment phase. Pre-
processing is usually a neglected part of research. At this stage, MO-
SACO intends to aggregate VNFs with the same functions within a SFC
and place them in the same node, which reduces the VNF count without
affecting the normal function of the SFC. It effectively reduces queuing
delay, mapping costs and improves reliability. In the deployment phase,
MO-SACO leverages fog resources and edge devices to model VNF
placement traffic routing as a computation offloading decision. We also
unexpectedly discovered that VNF aggregation can jointly optimize SFC
paths with cloud-fog-edge offloading to achieve additional optimization
effects. Finally, we also take into account the performance changes of
deployed SFCs and handle non-compliant requests in a timely manner.
The main contributions of this paper is as follows:

• We express the multi-objective SFC deployment optimization as a
Mixed Integer Linear Programming (MILP) model, which bridges
latency, reliability, cost, and congestion that not fully considered
61

in existing work.
• Different from the backup mechanism, we use service aggregation
to aggregate VNFs that perform the same function in a SFC, so
that requests are converted into SFCs with fewer VNFs. This is
expected to save instantiation costs and reduce queuing delays
while ensuring request reliability.

• Using the idea of cloud-fog-edge collaboration, taking into ac-
count both wired and wireless transmission, we select the best
offloading decision of VNFs in different networks then route
traffic, and service aggregation can appropriately make up for the
single-node internal round-trip path faced by offloading.

• We conduct extensive simulations in resource-rich and
constrained network environments. The results show that MO-
SACO can not only adapt to different network environments and
achieve excellent performance in terms of latency, reliability and
cost, but also perform unexpectedly in cloud load relief.

The rest of the article is organized as follows. In Section 2, this
paper describes the related literature on the service function chain’s
deployment. Section 3 defines the scenarios as well as models the
network and the SFC request. Section 4 describes the strategies for
optimizing SFC deployment. Section 5 details the MO-SACO algorithm
and sub-algorithms proposed. Section 6 simulates the MO-SACO and
analyzes the evaluation results. In Section 7, we summarize this paper
and propose future directions.

2. Related work

Due to the difference of network environment, jointly placing VNFs
and routing traffic will generate multiple sets of variables, making the
solution of the problem more complex. Solving the multi-constraint SFC
deployment problem using mathematical theory has been proven to be
an NP-Hard problem [7,19]. This section divides the existing researches
into four categories according to the optimization objectives.

2.1. Service latency

The network latency is an indicator worthy of attention in the SFC
deployment. In a service request, the latency is the time required for
traffic to pass through all VNFs in the current SFC from source to
destination. Alleg et al. [20] assumed that the processing delay of a
single function is positively related to the available resources of the
server, and studied latency-aware VNF placement and chaining. But
this work considered using the core servers to host all VNFs while
ignoring the heterogeneous network characteristics. In fact, this is
also what many jobs ignore. Subramanya et al. [21] modeled SFC
placement as an Integer Linear Program (ILP) for minimizing latency
in 5G network architectures, they employed the neural network to
predict the number of instances, which facilitates scalable deployment.
In [22], the authors proposed a general 5G network slicing framework
to address VNF placement and set application-based latency limits for
each SFC. However, it used a simple delay model that ignores the node
processing and VNF queuing.

We also notice that offloading some services to the edge network
or fog network for deployment have been considered by researchers,
thereby reducing the overall service delay and the core network’s
load [17]. Huang et al. [23] regarded latency as a strict indicator and
considered using soft actor-critic for optimization in the edge cloud.
However, they focused on the DRL method and did not analyze SFC in
depth enough. Jin et al. [14] used game theory and computing offload
to propose a PSECO algorithm, which offloads VNFs to small base
stations in fog network. PSECO can effectively handle delay-sensitive
services and reduce the CAPEX and OPEX of internet service providers,
but it ignored the limited resources in fog networks, which leads to
a low deployment success ratio. Zamani et al. [16] considered the
cloud-to-fog scenario in the Internet of Things network and proposed
a SFC deployment solution, which aims at the bandwidth consumption
of the IoT devices and minimizes the delay. They formulated the SFC
deployment as an ILP problem and placed VNF in cloud or fog nodes,

but the author did not point out the algorithm to solve the model.
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2.2. Reliability

As a critical network functionality, SFCs are particularly vulnera-
ble to disruptions and software failures. Therefore, devising a robust
scheduling mechanism is essential for bolstering the reliability of SFCs.
Kang et al. [24] proposed an optimization model based on VNF allo-
cation of time slots, which can suppress service interruption caused
by VM failure and VNF re-instantiation. The authors converted the
SFC deployment problem into a MILP and come up with a heuristic
method to maximize the SFC continuous available time. Zhai et al. [25]
designed a VNF aggregation method to improve reliability and reduce
resource consumption, but after the aggregated VNFs are placed, it is
easy to cause the node overloaded result in entire SFC failed.

Redundant backup mechanisms are frequently used in actual works
to deal with software failures. Herker et al. [26] proposed an algorithm
to back up the entire SFC and embed it elastically into the data center,
nonetheless, this work greatly increased the resource overhead. Zeng
et al. [27]. A et al. did research on off-site backup of VNF. They backed
up the same VNF and deployed it on different nodes, but did not give
how to ensure the increase in delay and cost caused by enabling backup
after the original VNF failed. Post-failure SFC functionality should be
taken into account, and this increased reliability is still a cost sacrifice.

In addition to software failure, the reliability of SFC is also affected
by hardware. As we mentioned above, most of the existing researches
assume that the infrastructure of NFV is in an ideal state. Unlike [26,
27], Tang et al. [28] eschewed the backup redundancy approach.
Instead, they leveraged the PageRank to ascertain node significance,
while also taking into account both latency and reliability. However,
the source and end points are ignored during VNF deployment, thus
increasing the delay. Inspired by these works, we consider designing
novel mechanisms to ensure service reliability without causing a surge
in costs and delays.

2.3. Cost

Most studies have addressed SFC costs starting from the flexible
utilization of computing and network resources achieved by NFV. Costs
can be divided into OPEX and CAPEX. The former is about the server
and link resources, and the latter is related to costs energy consump-
tion, license fees, VNF instantiation, etc. Cui et al. [29] proposed a SFC
deployment approach based on user QoS and server resource-aware,
it ensured users’ multi-dimensional QoS requirements and operator
costs in limited network resources by combining the simulated anneal-
ing algorithm and tabu search algorithm. However, the method did
not perform very well in the scenario of large-scale networks. Beck
et al. [30] proposed a CoordVNF algorithm, which can reasonably solve
the VNF placement and resource allocation problems in large network
scenarios, but the research only considered the operator’s cost and
ignored the user’s QoS requirement. Chen et al. [31] took minimizing
the constrained QoS cost as the main goal, and formulated the problem
as ILP. Based on the hidden Markov model, they focused on the service
deployment of large networks such as cloud computing and public
cloud. There are also studies using reinforcement learning algorithms
to optimize operating costs, mainly to optimize VNF placement costs.
Luo et al. [32] utilized RNN and RL framework to reduce the overall
cost of deploying SFC in distributed data center, here, RNN is tasked
with traffic prediction, while RL is responsible for making deployment
decisions.

2.4. Multi-objective optimization

Multi-objective optimization in SFC deployment frequently encoun-
ters the challenge of conflicting metrics. Zahedi et al. [33] proposed a
method for reusing VNFs in cloud-fog computing to optimize latency
and resource consumption. They reused preliminary VNF instances
to facilitate flexible deployment of subsequent SFCs. However, they
62
Fig. 1. Different SFCs deployment example in Cloud-Fog-Edge. The VNFs in the red
and blue SFCs are respectively placed on different types of nodes. The colored arrows
indicate the routing direction between different nodes.

overlooked the fact that varying SFC lifecycles and the failure of reused
instances or nodes could result in the unavailability of multiple SFCs.
Xu et al. [34] proposed two strategies in their work. One is to deploy
multiple backup instances of one or more VNFs in the SFC to ensure
reliability, which is also a cost-effective solution. The other is to place
multiple VNFs in a single SFC on the same node and reassemble the
SFC, but it lacks restrictions on whether multiple VNFs can be placed
on the same node, and it is prone to node overload and unevenness in
small-scale networks. Han et al. [35] combined network state informa-
tion to propose server and link balance factors to measure the degree
of congestion, and embeds VNFs in the underlying network based on
the proposed index. They also proposed a strategy in which SFCs of
the same service back up each other. However, this solution did not
take the reliability of the baseboard network into consideration. Shang
et al. [36] considered optimization from a link perspective and pro-
posed a Candidate Path Selection (OPS) algorithm to optimize the VNF
placing and flow routing. It performed path selection and VNF place-
ment through Randomized Rounding (RR), then merged the same VNF
paths belonging to different SFCs as candidate paths, which effectively
reduces the network congestion and cost-effectiveness. Nonetheless,
their approach to assessing congestion primarily in cost terms limits
its applicability for multi-objective joint optimization.

In essence, the existing research on multi-objective SFC deployment
optimization often glosses over the interplay of multiple metrics or
fails to thoroughly address the intricate relationships within large
volumes of SFCs and VNFs in complex networks, thereby constraining
the effectiveness of the methods used.

3. Problem description and network model

This paper considers the SFC deployment issues in the three-tier net-
work architecture shown in Fig. 1(a). All three networks are equipped
with antennas to serve users or devices, the edge network can be con-
nected to the fog through the fronthaul (FH) link, and the fog network
connected to the cloud core network through the backhaul (BH) link
can serve multiple edge networks. Moreover, the closer the fog or edge
is to the cloud core network, the more computing resources it has and
the cheaper it is, but at the same time it may be accompanied by an
increase in transmission delay. Fig. 1(b) represents an example of the
SFCs deployed in Fig. 1(a). Detailed deployment is driven by different
metrics such as latency, reliability, cost and network congestion.

This section next models the physical network consisting of cloud,
fog and edge access networks, then presents the SFC request from users
to users, and finally elaborates the qualification conditions for SFC
deployment to the physical network. Notations relevant to this paper
are summarized in Table 1.
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Table 1
Notations.

Params Description

𝐺𝑝 Physical network graph.
𝑁𝑝 , 𝐸𝑝 Set of physical nodes and links in 𝐺𝑝.
𝑅𝑝 Set of physical network resource constraints.
𝑐𝑛𝑝 , 𝑐

𝑢𝑠𝑒
𝑛𝑝

, 𝑐𝑎𝑣𝑎𝑛𝑝
Total,occupied,available CPU resources of server 𝑛𝑖.

𝑠𝑛𝑝 , 𝑠
𝑢𝑠𝑒
𝑛𝑝

, 𝑠𝑎𝑣𝑎𝑛𝑝
Total,occupied,available storage resources of 𝑛𝑖.

𝜀𝑛𝑝 Unit cost of server 𝑛𝑝 resources.
𝜁𝑛𝑝 Unit storage cost of 𝑛𝑝.
𝑟𝑒𝑛𝑝 The reliability of the node 𝑛𝑝.
𝑘𝑛𝑝 All VNF types that the node 𝑛𝑝 can host.
𝑑𝑙𝑝 Link 𝑙𝑝 ’s delay.
𝑏𝑙𝑝 Bandwidth capacity of link 𝑙𝑝.
𝜀𝑙𝑝 Unit cost of link resources.
𝑟𝑒𝑙𝑝 The reliability of the link 𝑙𝑝.
𝐺𝑅 SFC requests graph.
𝑁𝑅, 𝐸𝑅 Set of all VNFs and links of SFC 𝐺𝑅.
𝑅𝑣𝑛𝑓 SFC deployment constraint.
𝐿𝑓𝑟𝑜𝑚, 𝐿𝑡𝑜 Source and destination of SFC, respectively.
𝐶𝑁 , 𝑆𝑁 Sets of CPU and storage resource.
𝑅𝑁 Bandwidth resource requirements set of VNFs.
𝐷𝑣𝑛𝑓 Tolerable overall delay of the SFC request.
𝑇𝑣𝑛𝑓 lifetime of an SFC path.
𝑀 Deployment strategy including 𝑀𝑁 and 𝑀𝐸 .
𝑀(𝑓𝑖),𝑀(𝑒𝑖) Deploy position of 𝑓𝑖 , 𝑒𝑖.
𝐿𝑀(𝑓𝑖 )

𝑓𝑖
Whether 𝑓𝑖 can be placed on 𝑀(𝑓𝑖) by position.

𝐹𝑀(𝑓𝑖 )
𝑓𝑖

Whether 𝑓𝑖 can be placed on 𝑀(𝑓𝑖) by function.

𝐿𝑀(𝑒𝑖 )
𝑒𝑖 Whether 𝑒𝑖 can be mapped on 𝑀(𝑒𝑖).

𝐼𝑛(𝑛𝑝) Set of incoming links of 𝑛𝑝.
𝑂𝑢𝑡(𝑛𝑝) Set of outgoing links of 𝑛𝑝.
𝐷𝑒𝑙 Single request latency.
𝐷𝑒𝑙(𝑛), 𝐷𝑒𝑙(𝑙) Latency of a VNF/virtual link mapped to a node/path.
𝑅𝑒𝑙 Single request reliability.
𝐶𝑜𝑠 Total request cost including CAPEX and OPEX.
𝐶𝐴𝑃𝐸𝑋 Virtual machine instantiation cost.
𝜏 Instantiation cost per unit VNF resource.
𝑂𝑃𝐸𝑋 Including node and path resource cost.
𝑂𝑏𝑗 Objective function.
𝛼, 𝛽, 𝛾 Weight coefficients of respective indicators.
𝑁𝑓𝑖 Set of candidate placement nodes for 𝑓𝑖.
𝑟𝑤𝑙 Wireless date transmission rate.
𝑊𝑤𝑙 The bandwidth of the channel.
𝑔𝑛𝑤𝑙

𝑖,𝑗
Transmission power of access network 𝑛𝑖.

𝑝𝑛𝑤𝑙
𝑖,𝑗

Channel gain between 𝑛𝑖 and 𝑛𝑗 .

𝜎2
𝑤𝑙 Gaussian noise power.

𝑇𝑛𝑜𝑤 , 𝑇𝑏𝑒𝑔𝑖𝑛 The time when SFC was deployed and current time.
𝑅 ,𝑠𝑒𝑡 SFC queue and deployed successfully SFC set.
𝑖𝑛𝑑 Indicator set of SFC.
𝑁𝑢𝑚𝑓𝑎𝑖𝑙 The number of deployed-failed SFC.
𝑁 𝑐𝑙𝑜 , 𝑁𝑓𝑜𝑒 Set of available cloud and fog or edge nodes.

3.1. Physical network

The physical network consists of multiple distributed fog or edge
wireless access networks and centralized cloud networks. We represent
it as an undirected weighted graph 𝐺𝑝 = (𝑁𝑝, 𝐸𝑝), 𝑁𝑝 = {𝑛𝑖|𝑖 =
1, 2,… , |𝑁𝑝|} represents a set of physical nodes. Each node can host
the specific types of VNF. 𝐸𝑝 = {𝑙𝑖|𝑖 = 1, 2,… , |𝐸𝑝|} indicates the set
of physical links. Define 𝑅𝑝 = (𝐶𝑁 , 𝐶𝐸 ) as a set of physical network
resource constraints, for any physical node 𝑛𝑝𝜖𝑁𝑝, where 𝐶𝑁 indicates
the properties of a physical node, e.g., (𝑐𝑛𝑝 , 𝑐

𝑢𝑠𝑒
𝑛𝑝

, 𝑐𝑎𝑣𝑎𝑛𝑝
) and (𝑠𝑛𝑝 , 𝑠

𝑢𝑠𝑒
𝑛𝑝

, 𝑠𝑎𝑣𝑎𝑛𝑝
)

for the total, occupied, and available CPU and storage resources of the
server, respectively. In addition, 𝜀𝑛𝑝 and 𝜁𝑛𝑝 are the unit cost of CPU
and storage resources, 𝑟𝑒𝑛𝑝 represents the reliability of the node, and
𝑘𝑛𝑝 = {𝑘𝑖|𝑖 = 1, 2,… , 𝑛𝑝} represents all VNF types that 𝑛𝑝 can host.

𝐶𝐸 indicates the properties of a physical link, including link delay 𝑑𝑙𝑝 ,
andwidth capacity 𝑏𝑙𝑝 , unit cost of link resources 𝜀𝑙𝑝 and the reliability
63

f the link 𝑟𝑒𝑙𝑝 .
.2. SFC requests

The SFC request are modeled as undirected weighted graph 𝐺𝑅 =
𝑁𝑅, 𝐸𝑅), where 𝑁𝑅 = {𝑓𝑖|𝑖 = 1, 2,… , |𝑁𝑟|} means the collection
f VNFs in a SFC request from a user to another user, and 𝐸𝑅 =
𝑒𝑖|𝑖 = 1, 2,… , |𝐸𝑟|} indicates the set of all SFC links. Define 𝑅𝑣𝑛𝑓 =
𝐿𝑓𝑟𝑜𝑚, 𝐿𝑡𝑜, 𝐶𝑁 , 𝑆𝑁 , 𝐶𝐸 , 𝑅𝑁 , 𝑇𝑣𝑛𝑓 , 𝐷𝑣𝑛𝑓 ) as a deployment constraint,
here 𝐿𝑓𝑟𝑜𝑚 and 𝐿𝑡𝑜 respectively denote the source and destination
f request, 𝐶𝑁 = {𝑟(𝑓𝑖)|𝑖 = 1, 2,… , |𝑁𝑟|} and 𝑆𝑁 = {𝑠(𝑓𝑖)|𝑖 =
, 2,… , |𝑁𝑟|} are the set of computing and storage resource require-
ents of current SFC request, 𝑅𝑁 = {𝑟𝑒(𝑓𝑖)|𝑖 = 1, 2,… , |𝑁𝑟|} is the

eliability set of virtual machines instantiated by VNFs, 𝐶𝐸 = {𝑟(𝑒𝑖)|𝑖 =
1, 2,… , |𝐸𝑟|} indicates the set of bandwidth resource requirements of
all SFC links, 𝐷𝑣𝑛𝑓 and 𝑇𝑣𝑛𝑓 represent the tolerable overall transmission
delay of the physical path hosting the request and the lifetime of an SFC
path, respectively.

3.3. SFC deployment model

This paper models the deployment decision-making process of SFC
as:

𝑀𝑂 − 𝑆𝐴𝐶𝑂 ∶ (𝐺𝑝, 𝐺𝑅) ←←→ (𝑁𝑃 ∗
, 𝐶𝑁∗

, 𝐸𝑃 ∗
, 𝐶𝐸∗

), (1)

where 𝑀𝑂 − 𝑆𝐴𝐶𝑂 includes the placement strategy 𝑀𝑂 − 𝑆𝐴𝐶𝑂𝑁
for VNF and the mapping method 𝑀𝑂 − 𝑆𝐴𝐶𝑂𝐸 for virtual links. For
convenience, in the following text, we will use 𝑀 to simply represent
strategy 𝑀𝑂 − 𝑆𝐴𝐶𝑂. Specifically, 𝑀𝑁 ∶ (𝑁𝑝, 𝑁𝑅) = {𝑀(𝑓𝑖)|𝑖 =
, 2,… , |𝑁𝑟|} and 𝑀𝐸 ∶ (𝐸𝑝, 𝐸𝑅) = {𝑀(𝑒𝑖)|𝑖 = 1, 2,… , |𝐸𝑟|}, 𝑀(𝑓𝑖) and
𝑀(𝑒𝑖) respectively represent the deployment location of a certain VNF
nd virtual link in current request. 𝑁𝑃 ∗ ⊂ 𝑁𝑝 and 𝐸𝑃 ∗ ⊂ 𝐸𝑝 refer to a
ubset of physical nodes and physical paths, respectively. 𝐶𝑁∗ and 𝐶𝐸∗

epresent the CPU resources of the physical server and the bandwidth
esources allocated to a SFC request.

During the deployment process, both VNFs and virtual links should
ollow certain restrictions. Firstly, in terms of 𝑀 , each VNF is placed
n a node, and relevant virtual link is mapped to the underlying link,
hat is:

(𝑓𝑖) ∈ 𝑁𝑝,𝑀(𝑒𝑖) ∈ 𝐸𝑝,∀𝑓𝑖 ∈ 𝑁𝑅,∀𝑒𝑖 ∈ 𝐸𝑅. (2)

We introduce two binary variables to indicate the location constraints
and functional constraints of VNF placement, which is given by:

𝐿𝑀(𝑓𝑖)
𝑓𝑖

∈ {0, 1}, 𝐹𝑀(𝑓𝑖)
𝑓𝑖

∈ {0, 1},∀𝑓𝑖 ∈ 𝑁𝑅. (3)

The required resources of the VNF placed to the node should not exceed
its remaining resources. Similarly, the bandwidth also have to meet this
constraint, we have:

𝑐(𝑠)𝑎𝑣𝑎𝑀(𝑓𝑖)
≥

∑

𝑀(𝑓𝑖)
𝐿𝑀(𝑓𝑖)
𝑓𝑖

𝐹𝑀(𝑓𝑖)
𝑓𝑖

𝑟(𝑠)(𝑓𝑖),∀𝑓𝑖 ∈ 𝑁𝑅. (4)

𝑀(𝑒𝑖) ≥
∑

𝑀(𝑒𝑖)
𝐿𝑀(𝑒𝑖)
𝑒𝑖 𝑟(𝑒𝑖),∀𝑒𝑖 ∈ 𝐸𝑅. (5)

where 𝐿𝑀(𝑒𝑖)
𝑒𝑖 is the binary constraint of the virtual link mapping. Then

each VNF can only be placed on one substrate node and cannot be
divided, we have:
∑

𝑛∈𝑁𝑝
|𝑀(𝑓𝑖)| = 1,∀𝑓𝑖 ∈ 𝑁𝑅. (6)

Traffic should be routed in order, we indicate 𝐼𝑛(𝑛𝑝) and 𝑂𝑢𝑡(𝑛𝑝) as the
set of incoming and outgoing links of node 𝑛𝑝, that is:

∑

𝑙𝑝∈𝐼𝑛(𝑛𝑝)
𝐿
𝑙𝑝
𝑒𝑖 −

∑

𝑙𝑝∈𝑂𝑢𝑡(𝑛𝑝)
𝐿
𝑙𝑝
𝑒𝑖 = 𝐿

𝑛𝑝
𝑓𝑖+1

𝐹
𝑛𝑝
𝑓𝑖+1

− 𝐿
𝑛𝑝
𝑓𝑖
𝐹

𝑛𝑝
𝑓𝑖
,

∀𝑛𝑝 ∈ 𝑁𝑝,∀𝑙𝑝 ∈ 𝐸𝑝
(7)

In our strategy, we define the evaluation indicators and calculation
ethod of latency, reliability, cost and load, and they are calculated as

ollows:
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(1) Latency : As for the user-to-user SFC deployment delay in de-
cision, 𝑀 , it can be divided into processing delay, queuing
delay, propagation delay and sending delay. Since our working
scenario is a distributed data center with a certain scale, after our
estimation, compared with the propagation delay and queuing
delay, the sending delay can be ignored, and the processing
delay will not be differentiated by different strategies. Therefore
the delay is defined as:

𝐷𝑒𝑙 =
∑

𝑓𝑖∈𝑁𝑅

𝐷𝑒𝑙(𝑓𝑖)

=
∑

𝑓𝑖∈𝑁𝑅

𝐷𝑒𝑙(𝑀(𝑓𝑖)) +
∑

𝑒𝑖∈𝐸𝑅

𝐷𝑒𝑙(𝑀(𝑒𝑖)),
(8)

where 𝐷𝑒𝑙(𝑓𝑖) includes the queuing delay 𝐷𝑒𝑙(𝑀(𝑓𝑖)) and all
link delays associated with the previous VNF 𝑓𝑖−1. Since network
scenarios involve cloud, fog, and edge devices, the specific cal-
culation methods for latency 𝐷𝑒𝑙(𝑀(𝑒𝑖)) may be different, their
specific definitions are elaborated in slowromancapiv@-B.

(2) Reliability : In general, reliability is defined as the probability of
a system providing standard services within a certain period of
time without any failures. It is usually quantified in terms of
time. But for SFC, in addition to nodes and links, the reliability
of all VNFs that make up the SFC should also be considered. The
reliability of a SFC can be given by:

𝑅𝑒𝑙 =
|𝑁𝑟|
∏

𝑖
𝑟𝑒𝑓𝑖 =

|𝑁𝑟|
∏

𝑖
𝑟𝑒(𝑓𝑖) ⋅ 𝑟𝑒𝑀(𝑓𝑖) ⋅ 𝑟𝑒𝑀(𝑒𝑖), (9)

where 𝑟𝑒𝑓𝑖 is the probability of normal operation of a single VNF,
calculated by the product of reliability of VNF, node and link.

(3) Cost : The cost is divided into CAPEX and OPEX. In this paper, we
consider CAPEX, which is represented by the instantiation cost
of the virtual machine, and OPEX, which includes the resources
cost of server and link. Hence the cost is defined as:

𝐶𝑜𝑠 = 𝐶𝐴𝑃𝐸𝑋 + 𝑂𝑃𝐸𝑋

𝐶𝐴𝑃𝐸𝑋 =
∑

𝑓𝑖∈𝑁𝑅

𝐿𝑀(𝑓𝑖)
𝑓𝑖

⋅ 𝐹𝑀(𝑓𝑖)
𝑓𝑖

⋅ 𝑟(𝑓𝑖) ⋅ 𝜏

𝑂𝑃𝐸𝑋 =
∑

𝑓𝑖∈𝑁𝑅

𝑂𝑃𝐸𝑋(𝑀(𝑓𝑖))

+
∑

𝑒𝑖∈𝐸𝑅

𝑂𝑃𝐸𝑋(𝑀(𝑒𝑖))

=
𝑁𝑟
∑

𝑖=1
𝐿𝑀(𝑓𝑖)
𝑓𝑖

⋅ 𝐹𝑀(𝑓𝑖)
𝑓𝑖

⋅ 𝑟(𝑓𝑖)(𝜀𝑀(𝑓𝑖) + 𝜁𝑀(𝑓𝑖))

+
∑

𝑒𝑖∈𝐸𝑅

𝐿𝑀(𝑒𝑖)
𝑒𝑖 ⋅ 𝑟(𝑒𝑖) ⋅ 𝜀𝑀(𝑒𝑖),

(10)

where 𝜏 is the instantiation cost per unit VNF resource.

To compare cost, latency, and reliability, we normalize each metric
as follows,

𝑋′ = 𝑋
𝐵𝑎𝑠𝑒𝑋

, (11)

where 𝑋 is the indicator we need to calculate, and 𝐵𝑎𝑠𝑒𝑋 is the
corresponding result obtained through the baseline algorithm. With
these definitions, the objective function can be defined as:

𝑂𝑏𝑗 = 𝛼𝐷𝑒𝑙′ − 𝛽𝑅𝑒𝑙′ + 𝛾𝐶𝑜𝑠′ (12)

where 𝛼, 𝛽, 𝛾 are the weight coefficients of respective indicators,
which can be adjusted according to the actual QoS requirements of the
business, 𝛼+𝛽+𝛾 = 1. Hence, Our target is to find a policy that minimize
the objective function:

𝑀∗ = arg min𝑂𝑏𝑗. (13)
64

𝑀

Fig. 2. Comparison of traditional VNF deployment methods and VNF aggregation
methods.

4. SFC deployment optimization

This study aims to solve the following problems: Jointly optimize
the delay, reliability, cost and node load of SFC requests by placing
VNFs and routing links reasonably. This section focuses on three steps
to optimize the above performance.

4.1. VNFs aggregation decision

The common SFC deployment method is to place each VNF in
the baseboard network and route traffic sequentially. Its focus is on
the one-to-one relationship between VNFs and nodes, as shown in
Fig. 2(a), which usually ignores the preprocessing of SFC and does
not fully consider the deployment constraints of VNFs. Therefore, in
order to make up for the shortcomings of existing work, we analyze the
composition of SFCs and design a novel VNF aggregation rule to process
SFCs waiting to be deployed. Specifically, for each VNF, We note that
not all VNFs can be arbitrarily mapped to every physical node, due
to functional differences between physical nodes, they can only carry
a specific type of VNF, i.e. functional constraints. At the same time,
each physical node may be distributed in multi-domains, thus the SFC
deployment also should meet the location constraints of each VNF to
avoid excessive transmission delay caused by too long links. We first
ensure that it meets the placed constraints of resource, function and
location, then the candidate node set of the current function can be
obtained through

𝑁𝑓𝑖 = {𝑛𝑝|𝑐𝑎𝑣𝑎𝑛𝑝
≥ 𝑟(𝑓𝑖), 𝐹

𝑛𝑝
𝑓𝑖

= 𝐿
𝑛𝑝
𝑓𝑖

= 1} (14)

Secondly, we found that there are duplicate VNFs in a considerable
number of existing SFCs, such as VOIP services (NAT-FW-TS-FW-NAT),
Web services (FW-LB-NAT-LB-Webserver), etc. In this case, we consider
aggregating VNFs that perform the same function inside the SFC and
placing them at the same node, as shown in Fig. 2(b), assuming that
VNF2 and VNF4 perform the same function, and there is intersection
𝑁𝑓𝑖 ,𝑓𝑗 in their respective candidate node sets, that is

∃𝑁𝑓𝑖 ,𝑓𝑗 = 𝑁𝑓𝑖 ∩𝑁𝑓𝑗 . (15)

Subsequently, the original request 𝐺𝑅 can be converted into a tempo-
rary SFC 𝐺′

𝑅 with 𝑁𝑅 = {𝑓1, 𝑓2,4, 𝑓3, 𝑓5}. For 𝑓2,4, since the VNF just
executes the same function twice, we have 𝑟(𝑓2,4) = 𝑚𝑎𝑥(𝑟(𝑓2), 𝑟(𝑓4)),
𝑠(𝑓2,4) = 𝑚𝑎𝑥(𝑠(𝑓2), 𝑠(𝑓4)) to ensure that the necessary functions will
not be missing.

Theoretically, according to (8)–(10), 𝐺′
𝑅 will have a VNF perfor-

mance improvement of nearly 20% compared to 𝐺𝑅, reducing the
number of VNFs in the same SFC will mean savings in virtual machine
instantiation costs and node resource costs. Then, only links need to
be considered when calculating the reliability of VNF4, the overall
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Fig. 3. VNFs choose a cloud network, a fog access network or an edge access network to deploy.
reliability will also be improved. However, the update of the request
pattern means a change of deployment location. We cannot assert that
all target QoS are improved but express VNF aggregation as a decision,
that is, choosing the strategy with a smaller objective function between
aggregation placement and dispersion placement. It is denoted as:

𝑂𝑏𝑗𝑎𝑔𝑔 = 𝛼(𝐷𝑒𝑙𝑎𝑔𝑔 −𝐷𝑒𝑙(𝑓𝑗 )) − 𝛽𝑅𝑒𝑙∕(𝑟𝑒(𝑓𝑗 ) ⋅ 𝑟𝑒𝑀(𝑓𝑖))

+ 𝛾(𝐶𝑜𝑠𝑎𝑔𝑔 − 𝐶𝑜𝑠𝑁 (𝑀(𝑓𝑗 ))

𝑂𝑏𝑗∗ = 𝑚𝑖𝑛(𝑂𝑏𝑗, 𝑂𝑏𝑗𝑎𝑔𝑔),

(16)

where 𝑁𝑓𝑖 ,𝑓𝑗 represents the intersection of candidate nodes of VNF2
and 4, and 𝑂𝑏𝑗𝑎𝑔𝑔 is the new objective function calculated through the
aggregation strategy.

It is worth mentioning that, 𝐸𝑅 still maintains the original virtual
link order, so the propagation delay and link cost do not necessar-
ily increase due to the aggregation decision. Therefore, we further
introduced fog node and edge devices for further optimization.

4.2. VNF offloading decision

Since the edge device and fog network are closer to the user’s loca-
tion, and there are a certain amount of CPU resources and forwarding
resources, some VNFs in the SFC can be offloaded to the edge network
or fog network for mapping and deploying, which shown in Fig. 3. Edge
and fog serve as the complement to the clouds, can effectively reduce
the end-to-end delay and the data center loading, first, it alleviates the
high queuing delay caused by the high load of cloud nodes; second,
when two or more VNFs are placed in the same cloud network domain,
it also reduces the propagation delay between VNFs. The third and
more wonderful point is that the offloading decision can have some
subtle connections with our aggregation decision. In Fig. 2(b), after
VNF2 and 4 are aggregated, the aggregated VNF changes the link shape
of the SFC. There is a round-trip path between the new VNF2,4 and
VNF3, and placing the VNF in the access network will also generate
round-trip time, this just makes up for it. Subsequent experimental
results also verified the feasibility of our strategy. However, due to
the relative scarcity of fog resources and edge resources in the access
network, this study only allows each SFC to request the use of fog/edge
computing resources of its own user access network.

The arrival process of SFC on the node conforms to the Poisson dis-
tribution, and the service time conforms to the exponential distribution,
so we utilize the M/M/1 model to calculate the processing delay of each
VNF,

𝐷𝑒𝑙(𝑀(𝑓𝑖)) =
1

𝑐𝑎𝑣𝑎𝑀(𝑓𝑖)
∕𝑟(𝑓𝑖) − 𝐿𝑀(𝑓𝑖)

𝑓𝑖
𝐹𝑀(𝑓𝑖)
𝑓𝑖

𝜆 + 𝜌
, (17)

where 𝜆 represents the arrival rate of SFC, and 𝜌 is an infinitesimal
positive number to avoid the situation where the denominator of the
formula is 0.
65
Since the fog edge network is included in the three-layer struc-
ture, both wired and wireless transmission methods should be consid-
ered [37]. Under the condition that the constraints are met, when the
VNF is deployed in the cloud network, the deployment path 𝑀(𝑒𝑖) from
the VNF 𝑓𝑖 to the previous VNF 𝑓𝑖−1 is found and its delay 𝐷𝑒𝑙(𝑀(𝑒𝑖))
is obtained. Then the 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 algorithm is applied for tracing the path
𝑝𝑓𝑖 ,𝑡𝑜 from the VNF 𝑓𝑖 to user 𝐿𝑡𝑜 and obtain its corresponding delay by:

𝐷𝑒𝑙(𝑝𝑓𝑖 ,𝑡𝑜) =
∑

𝑙𝑝∈𝑝𝑓𝑖,𝑡𝑜

𝑑𝑙𝑝 . (18)

Therefore, the total delay of VNF 𝑓𝑖 deployed in the cloud network is

𝐷𝑒𝑙(𝑓𝑖)𝑐𝑙𝑜 = 𝐷𝑒𝑙(𝑀(𝑒𝑖)) +𝐷𝑒𝑙(𝑝𝑓𝑖 ,𝑡𝑜) +𝐷𝑒𝑙(𝑀(𝑓𝑖))𝑐 . (19)

When the VNF is deployed in a fog or edge device, we also find the
path 𝑀(𝑒𝑖), but unlike in the cloud network, in addition to consider-
ing the path 𝑀(𝑒𝑖)𝑐𝑙𝑜 between the cloud networks, the path 𝑀(𝑒𝑖)𝑓𝑜𝑒

between the fog/edge and the cloud network is also part of 𝑀(𝑒𝑖). The
delay of path 𝑀(𝑒𝑖)𝑐𝑙𝑜 is 𝐷𝑒𝑙(𝑀(𝑒𝑖)𝑐𝑙𝑜), as for 𝑀(𝑒𝑖)𝑓𝑜𝑒, due to different
placement locations, there will be differences in delay components. If
it is a fog node, the delay 𝐷𝑒𝑙(𝑀(𝑒𝑖)𝑐2𝑓 ) is determined by the optical
cable; if it is an edge device, in order to facilitate calculation, in
addition to the cloud and fog, wireless transmission is used between
edge devices and between devices and fog nodes, the data transmission
rate between an access network is given as

𝑟𝑤𝑙 = 𝑊𝑤𝑙 ⋅ log2(1 +
𝑔𝑛𝑤𝑙

𝑖,𝑗
∗ 𝑝𝑛𝑤𝑙

𝑖,𝑗

𝜎2𝑤𝑙

), (20)

where 𝑊𝑤𝑙 is the bandwidth of the channel, 𝑝𝑛𝑤𝑙
𝑖,𝑗

is the access network
𝑛𝑖’s transmission power, which is determined by data transmission
power control mechanism. 𝑔𝑛𝑤𝑙

𝑖,𝑗
denotes channel gain between access

network 𝑛𝑖 and 𝑛𝑗 . 𝜎2𝑤𝑙 is the Gaussian noise power inside the chan-
nel. Hence, the propagation delay between cloud and fog or edge be
obtained as

𝐷𝑒𝑙(𝑀(𝑒𝑖)𝑓𝑜𝑒) =

⎧

⎪

⎨

⎪

⎩

𝐷𝑒𝑙(𝑀(𝑒𝑖)𝑐2𝑓 ),𝑜𝑛 𝑓𝑜𝑔,

𝐷𝑒𝑙(𝑀(𝑒𝑖)𝑐2𝑓 ) +
𝑟(𝑓𝑖)
𝑟𝑤𝑙

,𝑒𝑑𝑔𝑒 𝑑𝑒𝑣𝑖𝑐𝑒,
(21)

We can choose the communication method with lower latency. Then,
when VNF 𝑓𝑖 is deployed in a fog or an edge access network, its delay
can be given as

𝐷𝑒𝑙(𝑓𝑖)𝑓𝑜𝑒 = 𝐷𝑒𝑙(𝑀(𝑒𝑖)𝑐𝑙𝑜) +𝐷𝑒𝑙(𝑝𝑓𝑖 ,𝑡𝑜)

+ 𝐷𝑒𝑙(𝑀(𝑒𝑖)𝑓𝑜𝑒) +𝐷𝑒𝑙(𝑀(𝑓𝑖))𝑓𝑜𝑒
(22)
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As a result, the VNF is deployed in different network environments,
corresponding to different delay. Moreover, reliability and cost will also
vary depending on the network environment, we then select the VNF
deployment location by 𝑚𝑖𝑛(𝑂𝑏𝑗𝑐𝑙𝑜, 𝑂𝑏𝑗𝑓𝑜𝑒).

4.3. SFC uninstall and resource release

In order to prevent SFCs that have been deprecated by users or
beyond their lifetime from occupying server resources continuously, we
set a deployment daemon, which monitors the requests that meet the
above criteria:

(1) The request normally exceeds its initial stated lifetime, i.e.

𝑇𝑛𝑜𝑤 − 𝑇𝑏𝑒𝑔𝑖𝑛 ≥ 𝑇𝑣𝑛𝑓 , (23)

where 𝑇𝑏𝑒𝑔𝑖𝑛 and 𝑇𝑛𝑜𝑤 represent the time when the SFC was
successfully deployed and the time now, respectively.

(2) Processing latency will increase due to an increase in the number
of underlying network services, causing the current SFC path
delay to exceed the initial requirement, i.e.

∑

𝐺𝑗∈𝑠𝑒𝑡⧵𝐺𝑖

∑

𝑓𝑘∈𝐺𝑗

∑

𝑀(𝑓𝑘)∈𝑀(𝐺𝑖)
𝐷𝑒𝑙(𝑀(𝑓𝑘))

+ 𝐷𝑒𝑙(𝐺𝑖) ≥ 𝐷𝑣𝑛𝑓 ,
(24)

where 𝐺𝑖 represents the current request, 𝑠𝑒𝑡 represents the set
of successfully deployed requests, and 𝑀(𝐺𝑖) represents the set
of nodes placed by all VNFs in 𝐺𝑖.

Then these requests are uninstalled and resources are released.
Besides, in actual network environments, once the server load exceeds
80%, indicating that the resources about to be exhausted and cannot
respond to user requests in a timely manner. For convenience, we scale
the initial total resources of the node 𝑛𝑝 to its 80%. i.e.

𝑐𝑛𝑝 ← 𝑐𝑀(𝑓𝑖) × 80%, 𝑐𝑎𝑣𝑎𝑀(𝑓𝑖)
= 𝑐𝑛𝑝 − 𝑐𝑢𝑠𝑒𝑀(𝑓𝑖)

,

∀𝑓𝑖 ∈ 𝑁𝑅.
(25)

5. Algorithm design

For an SFC request with latency and reliability requirements, achiev-
ing efficient deployment of VNFs is an NP-Hard problem, which is
difficult to solve in polynomial time. Hence, a service function chain or-
chestration strategy based on function aggregation and VNF offloading
migration is proposed.

5.1. MO-SACO algorithm

In order to prove the superiority of our algorithm, for each SFC
request 𝐺𝑖, we evaluate its performance according to the three in-
dicators of Eqs. (8)–(10). Also, for requests that have already been
processed, we also take the deployment success rate into account. A
detailed description of the MO-SACO algorithm is shown in Algorithm
1. First, we take the information of the physical network 𝐺𝑝, 𝑅𝑝 and
SFC requests 𝑅 coming in a Poisson process as input, and take the
set of successfully deployed requests 𝑆𝑒𝑡, the set of indicators for each
request 𝑖𝑛𝑑 , and the number of failed deployment requests 𝑁𝑢𝑚𝐹𝑎𝑖𝑙 as
output and initialize. At each time 𝑡, MO-SACO inspects the SFCs that
have exceeded their lifecycles from 𝑆𝑒𝑡 and unloads them directly from
the infrastructure, it also clears requests that do not meet the latency
requirements, and then releases the corresponding physical network
resources in time for new request deployment, as shown in lines 2–9
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of Algorithm 1. a
Algorithm 1 MO-SACO Algorithm.
Input: Physical network 𝐺𝑝 = (𝑁𝑝, 𝐸𝑝), network constraints 𝑅𝑝 =

(𝐶𝑁 , 𝐶𝐸 ), SFC requests queue 𝑅 = {𝐺𝑖|𝑖 = 1, 2, ..., 𝑛};
utput: 𝑆𝑒𝑡 = {𝐹𝑗 |𝑗 = 1, 2, ..., 𝑚}, indicator set 𝑖𝑛𝑑 , deployment-failed

SFC number 𝑁𝑢𝑚𝐹𝑎𝑖;
1: Initialize 𝑆𝑒𝑡 = ∅, 𝑖𝑛𝑑 = ∅, 𝑁𝑢𝑚𝑓𝑎𝑖𝑙 =0;
2: for t=1, ..., 𝑇 do
3: if 𝑆𝑒𝑡! = ∅ then
4: for 𝐺𝑅 ∈ 𝑆𝑒𝑡 do
5: Uninstall the SFC 𝐺𝑅 if 𝑡 ≥ 𝑇𝐺𝑅

𝑏𝑒𝑔𝑖𝑛 + 𝑇𝑣𝑛𝑓 ;
6: Clear delay exceeding request by Eq. (24);
7: Update network resources 𝐺𝑝;
8: end for
9: end if
0: for 𝐺𝑅 ∈ 𝑅 do
1: Initialize SFC candidate node set 𝑁𝐺𝑅

← ∅;
2: for 𝑓𝑖 ∈ 𝐺𝑅 do
3: Find the candidate node set 𝑁𝑓𝑖 by Eq. (14);
4: end for
5: if ∃𝑁𝑓𝑖 ∩𝑁𝑓𝑗 and 𝐹𝑓𝑖==𝐹𝑓𝑗 then
6: Update SFC shapes to get 𝐺𝑅𝑎𝑔𝑔

;
7: Virtual deploy 𝐺𝑅𝑎𝑔𝑔

;
8: Get the 𝐺𝐷𝑒𝑙

𝑎𝑔𝑔 , 𝐺𝐶𝑜𝑠
𝑎𝑔𝑔 and 𝐺𝑅𝑒𝑙

𝑎𝑔𝑔 respectively;
9: Calculate the 𝑂𝑏𝑗𝑎𝑔𝑔 by Eq. (16);
0: Compare with MILP deployment strategy;
1: Select aggregated or not by 𝑚𝑖𝑛(𝑂𝑏𝑗, 𝑂𝑏𝑗𝑎𝑔𝑔);
2: end if
3: Call the sub-algorithm 2;
4: Generate 𝐺𝐷𝑒𝑙 , 𝐺𝐶𝑜𝑠, 𝐺𝑅𝑒𝑙 , 𝑂𝑏𝑗∗𝐺𝑅

;
5: Get VNF offloading result 𝑀𝐺𝑅

;
6: if deploy successfully then
7: 𝑠𝑒𝑡 ← 𝑠𝑒𝑡 ∪ 𝐺𝑅;
8: 𝑖𝑛𝑑 ← 𝑖𝑛𝑑 ∪ {𝐺𝐷𝑒𝑙 , 𝐺𝐶𝑜𝑠, 𝐺𝑅𝑒𝑙};
9: else
0: 𝑁𝑢𝑚𝐹𝑎𝑖 ← 𝑁𝑢𝑚𝐹𝑎𝑖 + 1;
1: end if
2: 𝑅 ← 𝑅 ⧵ 𝐺𝑖;
3: end for
4: end for
5: return 𝑆𝑒𝑡,𝑖𝑛𝑑 , 𝑁𝑢𝑚𝐹𝑎𝑖;

Subsequently, lines 10–22 of Algorithm 1 are our VNF aggregation
decision. MO-SACO processes each pending SFC request in 𝑅 in order.
For the current SFC 𝐺𝑅, it finds the candidate placement node set 𝑁𝐺𝑅
for all VNF based on the rules we defined in slowromancapiv@-A,
and determines whether there is an intersection among the node set
𝑁𝐺𝑅

of VNFs that perform the same function. If so, it calculates the
corresponding metrics for the aggregated request 𝐺𝑅𝑎𝑔𝑔

and compares
them with the MILP deployment to return a more optimal deployment
scheme. Since the VNF offloading decision needs to continue to be
executed, 𝐺𝑅 is not actually placed in the substrate network at this
time. It should be noted that as the aggregation decision is completed
and selected, the shape of the SFC is also updated 𝐺𝑅 by 𝐺𝑅𝑎𝑔𝑔

.
Then in line 23–34, the VNF offloading sub-algorithm, which is

shown in Algorithm 2, is invoked to perform node-mapping and link-
routing for each VNF 𝑓𝑖. If deploys successfully, the sub-algorithm will
return a scheme 𝑀𝐺 with delay 𝐺𝐷𝑒𝑙, reliability 𝐺𝑅𝑒𝑙 and cost 𝐺𝐶𝑜𝑠.

sing the return value to update the set 𝑆𝑒𝑡 and 𝑖𝑛𝑑 . Otherwise, the
alue of 𝑁𝑢𝑚𝐹𝑎𝑖𝑙 which represents the number of fail-deployed SFC is
dded with one.
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5.2. VNF offloading algorithm

The VNF offloading algorithm sequentially processes all VNFs in
a SFC request. In line 2–5, for each VNF 𝑓𝑖, it divides the set of
candidate nodes 𝑁𝑓𝑖 into two collections, the available cloud network
𝑁𝑐𝑙𝑜 and the available fog network or edge device𝑁𝑓𝑜𝑒, and initializes
the temporary variables measuring the delay 𝐺𝐷𝑒𝑙

𝑖 ,cost 𝐺𝐶𝑜𝑠
𝑖 , reliability

𝐺𝑅𝑒𝑙
𝑖 of 𝑓𝑖.

Algorithm 2 VNF Offloading Algorithm.
Input: Single 𝑆𝐹𝐶 request 𝐺𝑅, constraints 𝑅𝑣𝑛𝑓 .
Output: Deployment strategy 𝑀𝐺𝑅

with delay 𝐺𝐷𝑒𝑙, cost 𝐺𝑅𝑒𝑙

,reliability 𝐺𝑅𝑒𝑙.
1: Init 𝑀𝐺𝑅

= ∅, 𝐺𝐷𝑒𝑙 = 𝐺𝐶𝑜𝑠 = 0, 𝐺𝑅𝑒𝑙 = 1;
2: for each 𝑓𝑖 ∈ 𝐺𝑅 do
3: Divide 𝑁𝑓𝑖 into 𝑁𝑐𝑙𝑜 and 𝑁𝑓𝑜𝑒;
4: Initialize 𝐺𝐷𝑒𝑙

𝑖 = 𝐺𝐶𝑜𝑠
𝑖 = ∞, 𝐺𝑅𝑒𝑙

𝑖 = 0;
5: 𝑂𝑏𝑗𝑖 = 𝛼 ⋅ 𝐺𝐷𝑒𝑙

𝑖 − 𝛽 ⋅ 𝐺𝑅𝑒𝑙
𝑖 + 𝛾 ⋅ 𝐺𝐶𝑜𝑠

𝑖 ;
6: for each 𝑛𝑗 ∈ 𝑁𝑓𝑜𝑒 do
7: Assumed place 𝑓𝑖 onto fog/edge device 𝑛𝑗 ;
8: Get the queueing delay 𝐷𝑒𝑙(𝑛𝑗 ) by Eq. (17);
9: Find the path 𝑀(𝑒𝑖)𝑐𝑙𝑜 and 𝑀(𝑒𝑖)𝑓𝑜𝑒;

10: Obtain 𝐷𝑒𝑙(𝑀(𝑒𝑖)𝑐𝑙𝑜, 𝐷𝑒𝑙(𝑀(𝑒𝑖)𝑓𝑜𝑒;
11: Use Dijkstra to get the path 𝑝𝑓𝑖 ,𝑡𝑜;
12: Get 𝐷𝑒𝑙(𝑓𝑖)

𝑛𝑗 by Eq. (19);
13: Calculate 𝐶𝑜𝑠(𝑓𝑖)

𝑛𝑗 , 𝑅𝑒𝑙(𝑓𝑖)𝑛𝑗 get 𝑂𝑏𝑗𝑓𝑜𝑒𝑖 ;
14: 𝑂𝑏𝑗𝑖 = 𝑚𝑖𝑛(𝑂𝑏𝑗𝑖, 𝑂𝑏𝑗𝑓𝑜𝑒𝑖 );
15: end for
16: for each 𝑛𝑘 ∈ 𝑁𝑐𝑙𝑜 do
17: Suppose place 𝑓𝑖 onto cloud server 𝑛𝑘;
18: Get the corresponding delay by Eq. (22);
19: Calculate 𝐶𝑜𝑠(𝑓𝑖)𝑛𝑘 , 𝑅𝑒𝑙(𝑓𝑖)𝑛𝑘 get 𝑂𝑏𝑗𝑐𝑙𝑜𝑖 ;
20: Decide to update 𝑂𝑏𝑗𝑖 = 𝑚𝑖𝑛(𝑂𝑏𝑗𝑖, 𝑂𝑏𝑗𝑐𝑙𝑜𝑖 );
21: end for
22: Update 𝐺𝐷𝑒𝑙

𝑖 , 𝐺𝐶𝑜𝑠
𝑖 and 𝐺𝑅𝑒𝑙

𝑖
23: 𝑀𝐺𝑅

← 𝑀𝐺𝑅
∪ {𝑓𝑖,𝑀(𝑓𝑖),𝑀(𝑒𝑖)};

24: 𝐺𝐷𝑒𝑙 ← 𝐺𝐷𝑒𝑙 + 𝐺𝐷𝑒𝑙
𝑖 ;

25: 𝐺𝐶𝑜𝑠 ← 𝐺𝐷𝑒𝑙 + 𝐺𝐶𝑜𝑠
𝑖 ;

26: 𝐺𝑅𝑒𝑙 ← 𝐺𝑅𝑒𝑙 ⋅ 𝐺𝑅𝑒𝑙
𝑖 ;

27: Update resources of substrate networks;
28: end for
29: return 𝑀𝐺𝑅

, 𝐺𝐷𝑒𝑙 , 𝐺𝐶𝑜𝑠, 𝐺𝑅𝑒𝑙;

Based on the current available fog or edge resources, the VNF 𝑓𝑖 is
mapped to the physical server 𝑛𝑗 to obtain the process delay 𝐷𝑒𝑙(𝑛𝑗 ) by
Eq. (17). Then algorithm 2 finds the path 𝑀(𝑒𝑖), as can be seen from the
above, the path 𝑀(𝑒𝑖) includes the cloud network path 𝑀(𝑒𝑖)𝑐𝑙𝑜 from
the current VNF 𝑓𝑖 to the previous VNF 𝑓𝑖−1, and the access network
path 𝑀(𝑒𝑖)𝑓𝑜𝑒. If the current VNF is the first one, algorithm 2 finds the
link from the current VNF 𝑓1 to the original user 𝐿𝑓𝑟𝑜𝑚. Then we can
get the path 𝑝𝑓𝑖 ,𝑡𝑜, and calculate the propagation delay 𝐷𝑒𝑙(𝑝𝑓𝑖 ,𝑡𝑜). If the
path 𝑂𝑏𝑗𝑓𝑜𝑒𝑖 obtained by the VNF 𝑓𝑖 deployed to the current server 𝑛𝑗
are smaller than those of the previous server 𝑛𝑗−1, the algorithm updates
the delay, cost, reliability. This procession is shown in line 6–15.

Similarly, in line 16–21, we assume that VNFs are deployed in cloud
servers 𝑁𝑐𝑙𝑜 and communicate by wire totally. For server 𝑛𝑘, we can
get paths 𝑀(𝑒𝑖) and 𝑝𝑓𝑖 ,𝑡𝑜, then calculate the 𝑂𝑏𝑗𝑐𝑙𝑜𝑖 . Then in line 22–27,
after traversing all cloud servers, the optimal VNF 𝑓𝑖 deployment result
can be obtained among all cloud servers, further the optimal strategy
between cloud and access network to deploy the current VNF 𝑓𝑖 can
be found. We finally obtain the total optimal delay, cost and reliability
of the current SFC deployment scheme 𝑀𝐺𝑅

. The detailed algorithm is
shown in Algorithm 2.
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Fig. 4. Network topology.

Table 2
Simulation scenario settings.

Parameter cloud fog edge

𝑐𝑛𝑝 U[80,120] U[50,70] U[10,30]
𝑠𝑛𝑝 U[120,150] U[60,90] U[20,40]
𝑏𝑙𝑝 U[60,80] U[30,50] U[10,20]
𝜀𝑛𝑝 U[0.6,1] U[0.6,1] U[0.6,1]
𝜁𝑛𝑝 U[0.6,0.8] U[0.3,0.5] U[0.1,0.2]
𝜀𝑙𝑝 U[1,1.5] U[0.3,0.5] U[0.1,0.2]
𝑟𝑒𝑛𝑝 U[0.98,0.99]
𝑟𝑒𝑙𝑝 U[0.96,0.98]
𝑑𝑙𝑝 U[2,4]
𝑟𝑒(𝑓 ) U[0.96,0.99]
|𝑁𝑟| U[4,8]
𝑟(𝑓 ) U[5,10]
𝑟(𝑒) U[5,10]
𝑠(𝑓 ) U[3,6]
𝜏 U[0.2,0.4]
𝛼, 𝛽, 𝛾 0.33

6. Simulation

6.1. Simulation environment settings

6.1.1. Simulation environment
We build the simulation environment on a server with CPU 12 ×

2.10 GHz, RAM 128.0 GB, disk capacity 3.6 TB, and OS 𝑢𝑏𝑢𝑛𝑡𝑢20.04.
The 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑛𝑒𝑡, which is a tool that integrates Mininet and Docker
container, is used to deploy the physical network. The software envi-
ronment is: 𝑃𝑦𝑡ℎ𝑜𝑛3.6 and open source package 𝑝𝑦𝑜𝑚𝑜2.5.0. Considering
that the simulation environment needs to jointly schedule the resources
of cloud network, fog network and edge device, the physical network
presence point consists of multiple centralized cloud nodes and multiple
distributed fog or edge nodes. Therefore, as shown in Fig. 4, We se-
lected two representative topologies USANET and NSFNET to simulate
network environments of different sizes. Assume that the black nodes
in Fig. 4 are connected to the fog or edge access network like Fig. 1(a).

6.1.2. Parameter settings
Since three types of networks are involved in our research, we list

the detailed parameters of the network and VNF in Table 2. Besides,
within the access network, the wireless channel bandwidth 𝑊 =
20 MHz, the transmission powers 𝑝𝑛𝑖 ,𝑛𝑗 = 0.5 W, the background noise
𝜎2 = 2 × 10−13𝑤. According to the wireless channel model for radio
environment, we set channel gain 𝑔𝑛𝑖 ,𝑛𝑗 = 127 + 30𝑙𝑜𝑔𝑑, where 𝑑 is the
coverage area of the wireless signal.

For SFC settings, suppose each node carries three types of VNF ran-
domly, and the VNF type that can be carried by the fog or edge server
connected to the cloud network is the same as that of the cloud server.
We assume that there are 10 types of VNFs in total. Assuming that
each SFC request arrives dynamically according to Poisson process with
parameter 𝜆 = 1∕20 and its lifetime subject to exponential distribution
with parameter 𝜇 = 1000. The simulation time is 10 000 time units.
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Table 3
Description of five methods.

Method Description

MILP-MUTI Baseline follow the greedy strategy, it first places the VNF
on nodes that minimizes the objective function, then finds
the shortest path to the previous VNF and route traffic.

AFRLP AFRLP first completes the aggregation decision, and then
all paths that satisfy the delay are found. Finally it selects
the optimal reliability path and places the VNFs in order.

AFPLR At the beginning, AFPLR completes the aggregation
decision and finds all delay-allowed mapping paths. Then,
it deploys VNFs according to the criterion with the
maximum node reliability and the path with the highest
node reliability.

DSPPR-A3C DSPPR-A3C provides SFC with information about VNFs that
need to be backed up and multiple VNFs that need to be
deployed on the same node through the VNF queue
network, which is configured by the queue memory and
LSTM. It also utilize A3C to accelerate the training process.

PSECO PSECO first embeds the VNFs in the SFC into the substrate
network in sequence and routes traffic. Then, when it
encounters VNFs that cannot meet resource constraints, it
offloads the VNFs that occupy the most physical resources
among the deployed requests to the fog.

Fig. 5. Object value result.

.1.3. Comparison algorithm
In order to prove the effectiveness of the algorithm proposed, We

se a greedy algorithm MILP-MUTI, which regard the objective function
efined in slowromancapiii@-C as a baseline and compare it with the
ollowing four strategies: two improved algorithms [33] with our ag-
regation strategy, namely Aggregate and First Routing Last Placement
AFRLP), Aggregate and First Placement Last Routing (AFPLR), DSPPR-
3C algorithm [34], and PSECO algorithm [14]. The description of the

ive algorithms is shown in Table 3. In order to reduce the interference
f random factors, we arrived at the final result by repeating the
xperiment many times.

.2. Evaluation results and discussion

Fig. 5 illustrates the 𝑂𝑏𝑗 results of our MO-SACO and four contrast-
ng algorithms relative to baseline MILP-MUTI. The results show that
he MO-SACO algorithm stands out among them and achieves excellent
esults in networks of different sizes. The specific results of request
cceptance rate, delay, cost and reliability will be shown in Figs. 6–9.

Fig. 6 illustrates the relationship of the request acceptance ratios
ver time for the six methods in USANET and NSFNET. The figure
hows that, under the condition of sufficient network resources and
andwidth in the initial stage, the deployment success rate of the six
ethods is maintained at a high level, but as the number of incoming

FC requests increases, the acceptance rate shows a clear downward
rend due to saturation of infrastructure.

AFRLP algorithm completes the placement of VNFs in all paths
hat meet the conditions, while AFPLR algorithm first places VNFs
nd then routes traffic to obtain deployment paths. Therefore, server
68
Fig. 6. Acceptance ratios.

resources and bandwidth resources become the bottlenecks of the
request acceptance rate of algorithms AFRLP and AFPLR, respectively.
PSECO algorithm offloads all SFCs with the largest proportion to the fog
network after the cloud network cannot carry new requests. However,
in the face of large-scale SFCs, PSECO cannot fully deploy requests in
the cloud or fog. As a result, its performance is slightly worse than
the baseline algorithm MILP. Due to backup mechanism and immature
joint VNF placement scheme of DSPPR-A3C, it may increase the risk of
node overload and uneven load when network resources are relatively
limited. Our MO-SACO algorithm jointly utilizes the resources of cloud,
fog and edge devices to increase the possibility of requests being
placed. In addition, with the help of VNF aggregation and offloading
decisions, MO-SACO exerts the superiority of cloud-fog collaboration
and is slightly better than USA in the relatively resource-constrained
NSF, which can be seen from Fig. 6(a) and (b).

Fig. 7(a) and (b) show the relationship between latency and the
number of successfully deployed SFCs in USA and NSF for the six meth-
ods, respectively. With the requests number increases, a considerable
part of CPU resources and bandwidth resources are occupied, and the
number of hops of the shortest delay path between VNFs also rises,
which indirectly causes the increase of queueing delay and propagation
delay, and gradually reaches a saturated state. But in relatively large-
scale networks, the effect of MO-SACO is better than other methods.
Sufficient network resources help it choose the optimal decision. We
also calculated the delay of VNF and link, as shown in Fig. 7(c) and
(d).

In Fig. 7(c), it is worth mentioning that the advantages of AFPLR,
AFRLP over MILP-MUTI, PSECO prove that the VNF aggregation deci-
sion does play a role in reducing node queuing delay. MO-SACO reduces
the number of VNFs and node load compared to the DSPPR-A3C,
and reflected in the results. In Fig. 7(d), MO-SACO does not achieve
optimal performance because the joint placement of DSPPR-A3C results
in a reduction in the number of SFC links. However, Our method still
has advantages over others, which proves that the VNF aggregation
decision appropriately compensates for the round-trip delay within the
hybrid network.

Fig. 8 shows the effects of six SFC deployment strategies in two
network topologies. After being improved by our aggregation strategy,
the performance of the AFPLR and AFRLP algorithms is significantly
better than that of the MILP-MILP and PSECO algorithms. When placing
VNFs, PSECO method does not affect the number of placed nodes, and
as a result, the node reliability is not significantly improved. AFRLP
places a higher priority on reliability, and the DSPPR-A3C algorithm
directly reduces the number of mapped links of SFC by jointly placing
VNFs, resulting in an improvement in request reliability. The results of
the two schemes are also comparable. Different from DSPPR-A3C, MO-
SACO proposed in this article focuses on reducing the number of VNFs.
After aggregation, the layout of SFC may be changed, and with the
help of the advantages of cloud-fog-edge collaboration and offloading
decision-making, the number of intermediate links that requests actu-
ally pass through is reduced, as expected, MO-SACO produces better

performance in terms of reliability. Moreover, the reliability advantage



Computer Communications 224 (2024) 60–71J. Xiao et al.

s
S
t
t
b

t
m
a
s
D
s
a
d
r

u
i
o
V
o
c
P
m
a
b
f
D

Fig. 7. SFC delay.
Table 4
Summary of experimental results.

Algorithm USANET NSFNET

Obj Acceptance Latency Reliability Cost Variance Obj Acceptance Latency Reliability Cost Variance

MILP-MUTI ∖ 73.5% 72.98 70.63% 155.57 0.115 ∖ 73.1% 38.74 77.45% 96.36 0.169
AFRLP 0.235 76.3% 64.08 74.51% 132.59 ∖ 0.225 76.8% 33.86 83.24% 86.01 ∖
AFPLR 0.221 79.0% 63.98 78.46% 141.02 ∖ 0.215 77.4% 34.54 86.37% 85.48 ∖
PSECO 0.276 63.8% 68.15 71.49% 134.15 0.101 0.262 72.5% 35.66 79.55% 87.75 0.146
DSPPR-A3C 0.202 76.8% 58.48 78.02% 133.25 0.108 0.193 78.0% 33.18 85.96% 81.98 0.156
MO-SACO 0.140 81.5% 55.89 79.39% 124.38 0.085 0.146 82.5% 31.58 88.87% 75.79 0.124
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Fig. 8. Reliability in different topologies.

hown in Fig. 8(a) is greater than that in 8(b), which proves that MO-
ACO performs better in large-scale networks. This is because during
he virtual link mapping process, adjacent VNFs pass through more
han one physical link after being deployed, and the offloading decision
ased on the access network highlights this feature.

Fig. 9(a) and (b) illustrates the average SFC deployment cost of
he MILP-MUTI, AFRLP, AFPLR, PSECO, DSPPR-A3C and MO-SACO
ethods. In networks of different sizes, the advantages of MO-SACO’s

verage deployment cost compared to the other five algorithms are
till obvious, but there is a difference in the cost of MO-SACO over
SPPR-A3C. As the network space expands, the larger the exploration

pace of MO-SACO, the more significant the cost optimization of nodes
nd links, while DSPPR-A3C has to back up more VNFs in a complex
ata center, resulting in a slight increase in instantiation costs and node
esources.

In order to get into the details of deployment cost reduction, let
s analyze Fig. 9(c) and (d), which show node costs (including VNF
nstantiation) and link costs respectively. In Fig. 9(c), we can clearly
bserve the difference in node resource costs. DSPPR-A3C has a higher
NF cost than other methods due to the backup mechanism. The
ther five strategies are distributed in two areas in the curve. The
ost reduction of MO-SACO, AFPLR and AFRLP compared to MILP and
SECO depends on the aggregation decision of VNF. In Fig. 9(d), these
ethods show different results in terms of bandwidth overhead. AFRLP

nd DSPPR-A3C are committed to reducing the number of links to affect
andwidth costs. AFRLP prioritizes link reliability and favors paths with
ewer hops, while DSPPR-A3C directly optimizes specific VNF links, so
SPPR-A3C is better than AFRLP. PSECO deploys as many VNFs as
69
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possible in the fog network. Although it takes advantage of the low
bandwidth cost, the ping-pong path will extend the SFC path. When the
MO-SACO deploys each VNF in the SFC to the physical node, it always
find the optimal location based on the decisions in slowromancapiv@-A
and slowromancapiv@-B, and tends to deploy multiple VNFs under the
same access network.

After completing the above simulation, we also found that MO-
SACO is also effective in load balancing. We utilize

𝑉 𝑎𝑟 = 1
𝑁𝑝

𝑁𝑝
∑

𝑖=1
(𝑐𝑢𝑠𝑒𝑛𝑖

−

∑𝑁𝑝
𝑗=1 𝑐

𝑢𝑠𝑒
𝑛𝑗

𝑁𝑝
)2 (26)

to calculate the load variance of cloud nodes in the network, where
𝑁𝑝 means the set of cloud node. The statistics of the results are
hown in Fig. 10(a) and (b). Whether in large-scale data centers or
mall networks with limited resources, the node load variance MO-
ACO is numerically lower than other comparison algorithms. In the
efinition of queueing delay Eq. (17), the processing rate of a node is
egatively correlated with its load, so the SFC tends to be deployed
n servers with relatively sufficient resources in the available network
et. In addition, our computation offloading decision jointly invokes the
esources of cloud, fog, and edge devices, further relieving the load of
he cloud core network and reserves more space for the cloud network
o accommodate SFCs.

In order to demonstrate the superiority of MO-SACO more clearly,
e synchronize the above experimental results in Table 4. The results
resented show that the MO-SACO strategy is optimal among the six
lgorithms, compared with PSECO, it alleviates the ping-pong path
roblem of the access network and further emphasizes the availability
f fog/edge resources, thus significantly increasing the service accep-
ance rate; aggregation decision-making overcomes the shortcomings
f DSPPR-A3C’s backup mechanism in resource doubling, making it
o save cost significantly while maintaining near-lossless reliability. In
ddition, the synergy of the two optimization methods proposed in this
aper also keeps the delay at a low level. Hence, MO-SACO can be used
s an efficient heuristic algorithm for SFC deployment.

. Conclusion

In this paper, we study the multi-objective optimization problem
f SFC deployment. We formulated the problem as a MILP model that
urther expands the placement constraints of physical networks and

eveloped a MO-SACO algorithm for the deployment problem of the
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Fig. 9. Costs in different topologies, including node and bandwidth cost.
Fig. 10. Physical node load variance.

SFC, which focuses on the various stages of an SFC request. Specifically,
first, before deploying, we design a VNF aggregation strategy to reduce
its resource consumption without affecting its overall function; then,
when deploying, we jointly invoke the resources of cloud, fog and edge
devices by computing the offloading decision to minimize latency of
SFC paths. Finally, after each request is deployed, we monitor their
lifetime and performance index, and deal with non-compliant SFCs in
a timely manner. In the simulation results, MO-SACO not only excels
in latency and reliability, but also achieves comparable performance in
the request acceptance rate, deployment cost, and load balancing.

According to the survey, there are various scenarios that cause SFC
interruption during its life cycle, such as traffic overload or node down-
time caused by an increase in the number of requests, VNF failure, user
migration, etc. In future, we will focus on the SFC migration problem
caused by the above scenarios. Specifically, we will adopt machine
learning methods, e.g., using improved graph convolution networks
to extract features of physical networks, and selecting other neural
network models to generate SFC migration decisions and exploring the
most advanced deep reinforcement learning strategies to ensure the
optimality of the strategy.

CRediT authorship contribution statement

Junbi Xiao: Writing – review & editing, Methodology, Concep-
tualization. Jiaqi Zheng: Writing – review & editing, Conceptualiza-
tion. Wu Wen: Conceptualization. Mohsen Guizani: Conceptualiza-
tion. Peiying Zhang: Methodology, Funding acquisition. Lizhuang
Tan: Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
70

Data will be made available on request.
Acknowledgments

This work is partially supported by the Natural Science Foundation
of Shandong Province under Grant ZR2023LZH017, ZR2022LZH015
and ZR2023QF025, partially supported by the Project for Integrated
Innovation of Science, Education and Industry of Qilu University of
Technology (Shandong Academy of Sciences) under Grant 2023PX057,
partially supported by the Open Project of Key Laboratory of Comput-
ing Power Network and Information Security, Ministry of Education
under Grant 2023ZD010, partially supported by the Talent Project of
Qilu University of Technology (Shandong Academy of Sciences) under
Grant 2023RCKY141, partially supported by the Industry- university
Research Innovation Foundation of Ministry of Education of China un-
der Grant 2021FNA01001, partially supported by the Major Scientific
and Technological Projects of CNPC under Grant ZD2019-183-006.

References

[1] J.F. Cevallos Moreno, R. Sattler, R.P. Caulier Cisterna, L. Ricciardi Celsi, A.
Sánchez Rodríguez, M. Mecella, Online service function chain deployment for
live-streaming in virtualized content delivery networks: A deep reinforcement
learning approach, Future Internet 13 (11) (2021) [Online]. Available: https:
//www.mdpi.com/1999-5903/13/11/278.

[2] D. Qi, S. Shen, G. Wang, Towards an efficient VNF placement in network function
virtualization, Comput. Commun. 138 (2019) 81–89, [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0140366418308247.

[3] W. Miao, G. Min, Y. Wu, H. Huang, Z. Zhao, H. Wang, C. Luo, Stochastic
performance analysis of network function virtualization in future internet, IEEE
J. Sel. Areas Commun. 37 (3) (2019) 613–626.

[4] G. Sun, Z. Chen, H. Yu, X. Du, M. Guizani, Online parallelized service
function chain orchestration in data center networks, IEEE Access 7 (2019)
100147–100161.

[5] J.M. Halpern, C. Pignataro, Service Function Chaining (SFC) Architecture, RFC
7665, 2015, [Online]. Available: https://www.rfc-editor.org/info/rfc7665.

[6] P. Zhang, X. Pang, Y. Bi, H. Yao, H. Pan, N. Kumar, DSCD: Delay sensitive
cross-domain virtual network embedding algorithm, IEEE Trans. Netw. Sci. Eng.
7 (4) (2020) 2913–2925.

[7] P. Cong, G. Xu, T. Wei, K. Li, A survey of profit optimization techniques
for cloud providers, ACM Comput. Surv. 53 (2) (2020) [Online]. Available:
https://doi.org/10.1145/3376917.

[8] H. Hantouti, N. Benamar, T. Taleb, Service function chaining in 5G & beyond
networks: Challenges and open research issues, IEEE Netw. 34 (4) (2020)
320–327.

[9] C. Mouradian, D. Naboulsi, S. Yangui, R.H. Glitho, M.J. Morrow, P.A. Po-
lakos, A comprehensive survey on fog computing: State-of-the-Art and research
challenges, IEEE Commun. Surv. Tutor. 20 (1) (2018) 416–464.

[10] S. Shen, L. Huang, H. Zhou, S. Yu, E. Fan, Q. Cao, Multistage signaling
game-based optimal detection strategies for suppressing malware diffusion in
fog-cloud-based IoT networks, IEEE Internet Things J. 5 (2) (2018) 1043–1054.

[11] Y. Shen, S. Shen, Z. Wu, H. Zhou, S. Yu, Signaling game-based availability
assessment for edge computing-assisted IoT systems with malware dissemination,
J. Inf. Secur. Appl. 66 (2022) 103140, [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2214212622000308.

[12] Z. Dongcheng, X. Jingzhao, S. Gang, Research on deployment of service function
chains for delay-sensitive services, J. Univ. Electron. Sci. Technol. China 50 (6)
(2021) 852–860.

[13] X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for
mobile-edge cloud computing, IEEE/ACM Trans. Netw. 24 (5) (2016) 2795–2808.

[14] H. Jin, X. Zhu, C. Zhao, Computation offloading optimization based on proba-
bilistic SFC for mobile online gaming in heterogeneous network, IEEE Access 7
(2019) 52168–52180.

https://www.mdpi.com/1999-5903/13/11/278
https://www.mdpi.com/1999-5903/13/11/278
https://www.mdpi.com/1999-5903/13/11/278
https://www.sciencedirect.com/science/article/pii/S0140366418308247
https://www.sciencedirect.com/science/article/pii/S0140366418308247
https://www.sciencedirect.com/science/article/pii/S0140366418308247
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb3
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb3
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb3
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb3
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb3
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb4
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb4
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb4
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb4
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb4
https://www.rfc-editor.org/info/rfc7665
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb6
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb6
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb6
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb6
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb6
https://doi.org/10.1145/3376917
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb8
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb8
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb8
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb8
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb8
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb9
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb9
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb9
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb9
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb9
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb10
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb10
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb10
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb10
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb10
https://www.sciencedirect.com/science/article/pii/S2214212622000308
https://www.sciencedirect.com/science/article/pii/S2214212622000308
https://www.sciencedirect.com/science/article/pii/S2214212622000308
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb12
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb12
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb12
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb12
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb12
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb13
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb13
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb13
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb14
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb14
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb14
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb14
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb14


Computer Communications 224 (2024) 60–71J. Xiao et al.
[15] J. Wu, H. Dai, Y. Wang, S. Shen, C.-Z. Xu, PECCO: A profit and cost-oriented
computation offloading scheme in edge-cloud environment with improved
moth-flame optimisation, Concurr. Comput.: Pract. Exper. 34 (2022).

[16] A. Zamani, S. Sharifian, A novel approach for service function chain (SFC)
mapping with multiple SFC instances in a fog-to-cloud computing system, in:
2018 4th Iranian Conference on Signal Processing and Intelligent Systems,
ICSPIS, 2018, pp. 48–52.

[17] D. Zhao, L. Luo, H. Yu, V. Chang, R. Buyya, G. Sun, Security-SLA-guaranteed
service function chain deployment in cloud-fog computing networks, Cluster
Comput. 24 (3) (2021) 2479–2494, [Online]. Available: https://doi.org/10.1007/
s10586-021-03278-4.

[18] H. Zhang, Y. Yang, X. Huang, C. Fang, P. Zhang, Ultra-low latency multi-task
offloading in mobile edge computing, IEEE Access 9 (2021) 32569–32581.

[19] P. Zhang, H. Yao, Y. Liu, Virtual network embedding based on computing,
network, and storage resource constraints, IEEE Internet Things J. 5 (5) (2018)
3298–3304.

[20] A. Alleg, T. Ahmed, M. Mosbah, R. Riggio, R. Boutaba, Delay-aware VNF
placement and chaining based on a flexible resource allocation approach, in:
2017 13th International Conference on Network and Service Management, CNSM,
2017, pp. 1–7.

[21] T. Subramanya, D. Harutyunyan, R. Riggio, Machine learning-driven service
function chain placement and scaling in MEC-enabled 5G networks, Comput.
Netw. 166 (2020) 106980, [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1389128619310254.

[22] Q. Zhang, F. Liu, C. Zeng, Adaptive interference-aware VNF placement for
service-customized 5G network slices, in: IEEE INFOCOM 2019 - IEEE Conference
on Computer Communications, 2019, pp. 2449–2457.

[23] Z. Huang, W. Zhong, D. Li, H. Lu, Delay constrained SFC orchestration for edge
intelligence-enabled IIoT: A DRL approach, J. Netw. Syst. Manage. 31 (3) (2023)
[Online]. Available: https://doi.org/10.1007/s10922-023-09743-2.

[24] R. Kang, F. He, T. Sato, E. Oki, Virtual network function allocation to maximize
continuous available time of service function chains with availability schedule,
IEEE Trans. Netw. Serv. Manag. 18 (2) (2021) 1556–1570.

[25] D. Zhai, X. Meng, Z. Yu, X. Han, Reliability-aware service function chain backup
protection method, IEEE Access 9 (2021) 14660–14676.

[26] S. Herker, X. An, W. Kiess, S. Beker, A. Kirstaedter, Data-center architecture
impacts on virtualized network functions service chain embedding with high
availability requirements, in: 2015 IEEE Globecom Workshops (GC Wkshps),
2015, pp. 1–7.
71
[27] Y. Zeng, Z. Qu, S. Guo, B. Tang, B. Ye, J. Li, J. Zhang, RuleDRL: Reliability-aware
SFC provisioning with bounded approximations in dynamic environments, IEEE
Trans. Serv. Comput. 16 (5) (2023) 3651–3664.

[28] T. Lun, Z. Pei-Pei, Z. Guo-Fan, C. Qian-Bin, Dynamic deployment algorithm for
service function chaining with QoS guarantee, J. Beijing Univ. Posts Telecom 16
(4) (2018) 90–96.

[29] C. Yajun, L. Hua, R. Hongwei, X. Tong, R. Wang, Service function chain deploy-
ment method for user QoS and network resource awareness, Small Microcomput.
Syst. 42 (9) (2021) 1931–1937.

[30] M.T. Beck, J.F. Botero, Scalable and coordinated allocation of service function
chains, Comput. Commun. 102 (2017) 78–88, [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0140366416303577.

[31] H. Chen, X. Wang, Y. Zhao, T. Song, Y. Wang, S. Xu, L. Li, MOSC: a method to
assign the outsourcing of service function chain across multiple clouds, Comput.
Netw. 133 (2018) 166–182, [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S138912861830029X.

[32] Z. Luo, C. Wu, Z. Li, W. Zhou, Scaling geo-distributed network function chains:
A prediction and learning framework, IEEE J. Sel. Areas Commun. 37 (8) (2019)
1838–1850.

[33] A. Zamani, B. Bakhshi, S. Sharifian, An efficient load balancing ap-
proach for service function chain mapping, Comput. Electr. Eng. 90 (2021)
106890, [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0045790620307436.

[34] H. Xu, G. Fan, L. Sun, W. Li, G. Kuang, B. Fan, G. Ahmadi, Dynamic SFC
placement scheme with parallelized SFCs and reuse of initialized VNFs: An A3C-
based DRL approach, J. King Saud Univ. - Comput. Inf. Sci. 35 (6) (2023)
101577, [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1319157823001313.

[35] C. Han, S. Xu, S. Guo, X. Qiu, A. Xiong, P. Yu, K. Guo, D. Guo, A multi-
objective service function chain mapping mechanism for IoT networks, in: 2019
15th International Wireless Communications & Mobile Computing Conference,
IWCMC, 2019, pp. 72–77.

[36] X. Shang, Z. Liu, Y. Yang, Online service function chain placement for cost-
effectiveness and network congestion control, IEEE Trans. Comput. 71 (1) (2022)
27–39.

[37] P. Zhang, C. Wang, G.S. Aujla, N. Kumar, M. Guizani, Iov scenario: Implementa-
tion of a bandwidth aware algorithm in wireless network communication mode,
IEEE Trans. Veh. Technol. 69 (12) (2020) 15774–15785.

http://refhub.elsevier.com/S0140-3664(24)00198-1/sb15
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb15
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb15
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb15
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb15
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb16
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb16
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb16
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb16
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb16
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb16
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb16
https://doi.org/10.1007/s10586-021-03278-4
https://doi.org/10.1007/s10586-021-03278-4
https://doi.org/10.1007/s10586-021-03278-4
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb18
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb18
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb18
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb19
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb19
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb19
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb19
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb19
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb20
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb20
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb20
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb20
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb20
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb20
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb20
https://www.sciencedirect.com/science/article/pii/S1389128619310254
https://www.sciencedirect.com/science/article/pii/S1389128619310254
https://www.sciencedirect.com/science/article/pii/S1389128619310254
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb22
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb22
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb22
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb22
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb22
https://doi.org/10.1007/s10922-023-09743-2
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb24
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb24
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb24
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb24
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb24
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb25
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb25
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb25
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb26
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb26
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb26
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb26
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb26
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb26
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb26
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb27
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb27
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb27
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb27
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb27
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb28
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb28
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb28
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb28
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb28
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb29
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb29
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb29
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb29
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb29
https://www.sciencedirect.com/science/article/pii/S0140366416303577
https://www.sciencedirect.com/science/article/pii/S0140366416303577
https://www.sciencedirect.com/science/article/pii/S0140366416303577
https://www.sciencedirect.com/science/article/pii/S138912861830029X
https://www.sciencedirect.com/science/article/pii/S138912861830029X
https://www.sciencedirect.com/science/article/pii/S138912861830029X
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb32
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb32
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb32
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb32
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb32
https://www.sciencedirect.com/science/article/pii/S0045790620307436
https://www.sciencedirect.com/science/article/pii/S0045790620307436
https://www.sciencedirect.com/science/article/pii/S0045790620307436
https://www.sciencedirect.com/science/article/pii/S1319157823001313
https://www.sciencedirect.com/science/article/pii/S1319157823001313
https://www.sciencedirect.com/science/article/pii/S1319157823001313
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb35
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb35
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb35
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb35
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb35
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb35
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb35
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb36
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb36
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb36
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb36
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb36
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb37
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb37
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb37
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb37
http://refhub.elsevier.com/S0140-3664(24)00198-1/sb37

	Multi-objective optimization of SFC deployment using service aggregation and computing offload
	Introduction
	Related Work
	Service Latency
	Reliability
	Cost
	Multi-objective Optimization

	Problem Description and Network Model
	Physical Network
	SFC Requests
	SFC Deployment Model

	SFC Deployment Optimization
	VNFs Aggregation Decision
	VNF Offloading Decision
	SFC Uninstall and Resource Release

	Algorithm Design
	MO-SACO Algorithm
	VNF Offloading Algorithm

	Simulation
	Simulation Environment Settings
	Simulation Environment
	Parameter Settings
	Comparison Algorithm

	Evaluation Results and Discussion

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


