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Abstract
The Internet of Things (IoT) has become a core driver leading technological 
advancements and social transformations. Furthermore, data generation plays 
multiple roles in IoT, such as driving decision-making, achieving intelligence, 
promoting innovation, improving user experience, and ensuring security, making it 
a critical factor in promoting the development and application of IoT. Due to the 
vast scale of the network and the complexity of device interconnection, effective 
resource allocation has become crucial. Leveraging the flexibility of Network 
Virtualization technology in decoupling network functions and resources, this work 
proposes a Multi-Domain Virtual Network Embedding algorithm based on Deep 
Reinforcement Learning to provide energy-efficient resource allocation decision-
making for IoT data generation. Specifically, we deploy a four-layer structured agent 
to calculate candidate IoT nodes and links that meet data generation requirements. 
Moreover, the agent is guided by the reward mechanism and gradient back-
propagation algorithm for optimization. Finally, the effectiveness of the proposed 
method is validated through simulation experiments. Compared with other methods, 
our method improves the long-term revenue, long-term resource utilization, and 
allocation success rate by 15.78%, 15.56%, and 6.78%, respectively.

Keywords  Internet of Things · Data generation · Network virtualization · Virtual 
network embedding · Deep reinforcement learning

1  Introduction

In the contemporary epoch characterized by digitalization, the Internet of Things (IoT) 
emerges as a pivotal catalyst propelling technological progress and societal meta-
morphosis (Wu et al. 2024a; Chettri and Bera 2020; Wu et al. 2024b). IoT facilitates 
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instantaneous communication and data exchange through the interconnection of 
diverse devices, sensors, and systems. The implementation of IoT engenders a more 
intelligent, efficient, and sustainable societal lifestyle  (Zhang et al. 2023a). Through 
interaction with intelligent devices, substantial enhancements in home automation, 
smart city governance, and industrial production optimization can be realized  (Du 
et al. 2023). Nevertheless, the essence of IoT lies in the generation and utilization of 
data (Ahmed et al. 2017). Data generation relies on a specific data model, wherein raw 
data undergoes computations to yield the requisite data aligned with the model for the 
target system (Dash et al. 2020). Continuously, as shown in Fig. 1, connected devices 
and sensors produce copious amounts of data, constituting a valuable reservoir for 
insights into business and social operations. Through the analysis of this data, compre-
hension of consumer behavior, optimization of production processes, enhancement of 
resource efficiency, and myriad other outcomes can be achieved (Hsu et al. 2021). The 
significance of data generation lies in furnishing a real-time, factually grounded foun-
dation for decision-making, empowering us to tackle challenges with greater prompt-
ness and precision (Duan et al. 2022a).

Within a myriad of IoT scenarios, the tightly woven interconnectivity among 
devices and sensors renders data generation an increasingly pervasive phenom-
enon. This expansive and diverse flow of data encompasses various stages, rang-
ing from data collection through processing to subsequent transmission. In this 
intricate ecosystem, the imperative of efficient resource allocation becomes 
apparent (Zhang et al. 2024a). Owing to the interconnected nature of sensors and 
devices, they not only generate copious amounts of data but also present formida-
ble challenges to the efficiency of networks and the utilization of resources (Al-
Hadhrami and Hussain 2020). To harness the potential of the Internet of Things, 
it is imperative to acknowledge the significance of data generation in IoT, with 
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a pivotal challenge being the attainment of efficient resource allocation within 
the expansive data flow (Zhang et al. 2023b; Duan et al. 2022b). In other scenar-
ios, such as traditional data centers or cloud computing environments, although 
data generation and processing tasks also exist, the challenge in IoT scenarios is 
how to efficiently allocate and manage these tasks in resource-constrained envi-
ronments. Maximizing the reduction of transmitted data not only enhances net-
work efficiency but also mitigates transmission latency by conserving precious 
resources. Efficient resource allocation not only renders IoT systems more agile 
and responsive but also establishes a robust foundation for innovation across 
diverse industries  (Feng et  al. 2024). Therefore, directing attention to and opti-
mizing resource allocation is pivotal for maximizing the benefits derived from 
IoT data generation.

Network Virtualization (NV) technology represents an innovative approach 
to the management of computer networks  (Chen et  al. 2023). By abstracting and 
isolating diverse network resources, including bandwidth, routers, and switches, 
it establishes multiple logically independent and mutually isolated virtual 
networks (Zhang et al. 2023c). Due to its flexibility and efficiency, this technology 
finds extensive applications in fields such as cloud computing and data centers (Xiao 
et al. 2023). NV enables enterprises to more effectively utilize network resources, 
enhance network performance and flexibility, and reduce operational costs, thereby 
propelling the process of digital transformation (Chen et al. 2023). In sectors such as 
cloud computing and data centers, the application of network virtualization endows 
systems with scalability and elasticity, enabling dynamic allocation and management 
of resources based on demand (Zhang et al. 2024b). In this context, Virtual Network 
Embedding (VNE), as an integral component of network virtualization, assumes 
the role of connecting virtual networks to the underlying physical network  (Chen 
et al. 2022; Wu et al. 2024c). VNE effectively maps virtual networks onto physical 
networks, ensuring optimal utilization of resources and maximizing performance. 
In the realm of the Internet of Things, the application of VNE becomes particularly 
crucial as it offers an innovative approach to addressing resource allocation 
challenges in IoT data generation. Through VNE, efficient resource allocation can be 
achieved in the IoT environment, ensuring the stability and reliability of the network 
during the process of data generation. This technology not only enhances the 
efficiency of data transmission but also furnishes IoT systems with a more flexible 
and intelligent network architecture. Therefore, the significance of VNE in the 
context of NV cannot be overstated, as it provides robust support for the successful 
implementation of IoT data generation (Wu et al. 2024b).

Based on the above motivations, in this work, we propose a multi-domain virtual 
network embedding (MD-VNE) algorithm based on deep reinforcement learning 
(DRL) to provide energy efficient resource allocation decision-making for IoT data 
generation. Specifically, the contributions are as follows,

•	 This is one of the first attempts to leverage VNE technology to provide energy-
efficient resource allocation decision-making for IoT data generation. In addition, 
we model IoT as a multi-domain physical network and construct resource 
constraints with storage, computing, and bandwidth as research objects.
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•	 We propose a four-layer structured agent for calculating candidate IoT nodes and 
links that meet data generation demands. Based on the reward mechanism and 
gradient back-propagation algorithm, the agent is guided to optimize to improve 
the long-term revenue, long-term resource utilization, and allocation success rate 
of resource allocation.

•	 We conducted a large number of simulation experiments to fully verify the 
effectiveness and superiority of the proposed method in the training and testing 
stages.

2 � Related work

2.1 � Data generation

Data generation has evolved through the following main stages:

2.1.1 � Sensor data simulation

Sensor data simulation is a common method for IoT data generation. By simulating 
the operating principles and environmental conditions of sensors, data streams 
similar to actual sensor data can be generated. For example, by simulating the 
readings of a temperature sensor, a series of temperature data can be generated 
for testing and evaluating the performance of an IoT application. Congress and 
Puppala (2022) applied UAVs to transportation infrastructure health monitoring 
and feature recognition techniques based on machine learning to identify traffic base 
information, which helped to optimize the use of UAVs for bridge health monitoring.

2.1.2 � Model‑based generation

Model-based generation is an approach to generate IoT data by training machine 
learning models. These models can learn and simulate the distribution and 
characteristics of IoT data to generate synthetic data that is similar to real data. 
For example, Generative Adversarial Networks (GANs) can be used to generate 
realistic IoT data. For the accurate detection and identification of malicious domain 
names, Woodbridge et al. (2016) for the first time used long and short-term memory 
networks to construct a DGA (domain generation algoritim) city name detector, 
and in terms of detection accuracy, recall rate and other aspects compared to the 
traditional machine learning models have obvious advantages.

2.1.3 � Data synthesis

Data synthesis is another commonly used method for IoT data generation. It 
is based on existing real data and generates new datasets by processing and 
transforming the data. This method can help in expanding the size of existing 
datasets and can generate data with different features and attributes. Yao et al. 
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(2020) proposed Attribute Descent to optimize the attributes of VehicleX for 
the field of vehicle re-recognition, which is able to generate a synthetic dataset 
that is better than random attributes, and can effectively improve the training 
accuracy of real data through joint training.

2.2 � Resource allocation

Research and development of IoT applications often necessitate large datasets 
for training and evaluating models. IoT devices and sensors can collect and 
transmit data in real-time across various environments and devices. This 
real-time data collection enables decision-makers to promptly gain insights 
into resource usage and demand, facilitating timely resource allocation 
decisions  (Duan et  al. 2022c). Through the analysis and extraction of these 
data, we can dynamically allocate and adjust resources based on actual needs 
and circumstances. This dynamic adaptability ensures that resource allocation 
aligns with specific requirements, thus enhancing resource utilization 
efficiency and performance. By establishing a resource allocation model that 
spans devices and applications, we can better coordinate and optimize resource 
allocation, thereby improving overall system efficiency and performance.

VNE problems have been proven to be NP difficult problems, and the strategies for 
solving VNE problems can be roughly divided into two categories, heuristic algorithms 
and artificial intelligence (AI)-based algorithms.

2.2.1 � Heuristic‑based VNE algorithm

Heuristics usually divide the solution process into two separate stages, namely 
node embedding and link embedding (Zhan et al. 2022). In the node embedding 
phase, the resource properties and topology properties of the node are usually 
used to embed the virtual node on the physical node. In Ref.  (Chen et  al. 
2021), Chen et al. proposed an algorithm based on the concept of distribution 
equilibrium for virtual node embedding on flexible mesh optical networks. 
The simulation results show that there are advantages in terms of acceptance 
rate and system benefits. Sun et  al. (2019) investigated the VNF placement 
problem for energy-efficient and flow-aware SFC orchestration across multiple 
clouds. They formulate the problem as an ILP model, and then propose a low-
complexity heuristic called Energy-Efficient Online SFC Request Orchestration 
(EE-SFCO-MD) across multiple domains, which can generate a near-optimal 
solution to the above problem. However, heuristic algorithms usually adopt a 
local search strategy, focusing only on the neighborhood of the current optimal 
solution in the search process. This local search strategy may lead to the 
algorithm falling into the local optimal solution, unable to jump out of the local 
optimal solution and find a better global solution. Therefore, the performance 
of the heuristic algorithm is limited by the choice of search strategy and the 
limitation of search space.



	 Automated Software Engineering           (2024) 31:66    66   Page 6 of 23

2.2.2 � AI‑based VNE algorithm

In recent years, reinforcement learning algorithms have been gradually applied in 
various fields due to their inherent advantages in solving decision-making problems. 
Since VNE problems can be naturally modeled as a decision-making process, 
mapping a VNF at each decision-making step, RL has been applied to the design 
of VNE schemes in many studies (Zhan et al. 2022; Zhang et al. 2022; Wang et al. 
2023). However, many of these RL methods train the manual functions of the 
physical and virtual networks as input to the RL agent. This doesn’t give you a 
complete picture of the state of your VNE environment, as a separate list of resource 
characteristics for nodes can lose structural information contained in the network 
itself.

Deep reinforcement learning (DRL) can be learned directly from the 
original topology information of virtual and physical networks, without the 
need to manually design features or rules. Through end-to-end learning, deep 
reinforcement learning can more comprehensively grasp the state of the VNE 
environment, including the structure information of the network. Policies 
and decisions can also be dynamically adjusted based on feedback from the 
environment, adapting to the changing VNE environment. Liu and Zhang (2024) 
proposed an advanced service function chain (SFC) embedding algorithm 
based on an enhanced deep deterministic policy gradient (E-DDPG) model, and 
achieved remarkable results in highly dynamic and complex cloud networks. 
Zhao et  al. (2022) proposed an advanced cross-domain SFC embedding 
algorithm based on a collaborative multi-agent reinforcement learning 
algorithm and achieved two- and four-fold improvements in running time and 
resource cost. Wu et al. (2024b) proposed a cross-domain VNE algorithm based 
on DRL for task offloading in Industrial IoT (IIoT) and achieved good results. 
In order to solve the above problems, this paper proposes a VNE scheme based 
on deep reinforcement learning for data generation in a general IoT scenario.

3 � Problem definition

Based on cluster technology, IoT generally consists of multiple regional networks, 
each of which is responsible for providing specific functions or services (Wu et al. 
2024b). Therefore, this work aims to explore multi-domain VNE (MD-VNE) for 
data generation in IoT.

3.1 � Abstract modeling

First, the abstract modeling of networks is required, where the relevant notations 
used in this work are shown in Table 1. For clarity, other notations defined in this 
work are shown in Table 2.

A diagram of this problem is shown in Fig. 2, this work focuses on two types of 
entities, one is the IoT network and the other is the data generation requests (DGRs) 
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in the IoT network. Moreover, they are all abstractly modeled as weighted undirected 
graphs. Specifically, the IoT is modeled as,

In addition, the DGR is modeled as,

Furthermore, we use lowercase letters to describe specific elements. For example, n� 
represents a specific IoT node, l�

ab
 represents the IoT link between n�

a
 and n�

b
 , etc.

(1)G� =
{
N�, L�,D�(N�), S�(N�),C�(N�),B�(L�)

}
.

(2)G� =
{
N�, L�, S�(N�),C�(N�),B�(L�)

}
,

Table 1   Notations used in this 
work

Modeling Attribute Notation

IoT Nodes of IoT N�

Links of IoT L�

Location of IoT nodes D�

Storage of IoT nodes S�

Computing of IoT nodes C�

Bandwidth of IoT links B�

DGR Virtual nodes for DGRs N�

Virtual links for DGRs L�

Virtual storage for DGR nodes S�

Virtual computing for DGRs nodes C�

Virtual bandwidth for DGRs links B�

Table 2   Other notations defined in this work

Notation Definition

�n�

n�
Whether the IoT node resources are successfully allocated

� l
�

l�
Whether the IoT link resources are successfully allocated

R_S�(n�
i
) The remaining storage resources of the IoT node

R_S�(n�
i
) The remaining computing resources of the IoT node

R_B�(l�
i
) The remaining bandwidth resources of the IoT link

C(G�

i
) The embedded cost of i-th DGR

R(G�

i
) The embedded revenue of i-th DGR

LR The long-term revenue
LRU The long-term resource utilization
ASR The allocation success rate
TR_B�(n�

i
) The total remaining bandwidth of the links connected to 

the current IoT node
Dis

�(n�
i
) The distance to other IoT nodes
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3.2 � Problem modeling

Based on the above analysis, the problem of this work can be summarized as: 
according to the resource requests of DGRs, allocate corresponding IoT resources 
to them for data generation tasks. Therefore, it can be characterized as a resource 
allocation process, as follows,

where |DGRs| represents the number of DGRs; ts,i and te,i represent the start time and 
end time of the i-th DGR, respectively. It can be found that this problem is a process 
of dynamically allocating resources for multiple groups of DGRs. Moreover, it is 
an obviously NP-hard problem. Therefore, the optimization goal of this work is to 
satisfy as many DGRs as possible with the least resource cost, i.e., energy-efficient 
data generation for IoT.

3.3 � Problem constraint

�n�

n�
 and � l�

l�
 respectively indicate whether the IoT node and link resources are 

successfully allocated. If the value is 1, it means success, otherwise it means failure, 
as follows,

(3)G𝖨
→ G𝖵

i
, for ∀ 1 ≤ i ≤ |DGRs|, ts,i ≤ t ≤ te,i,

(4)�n�

n�
=

{
1, node allocated successfully,

0, others,

(5)� l
�

l�
=

{
1, link allocated successfully,

0, others.
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Fig. 2   A diagram of abstract modeling in this problem
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Accordingly, the relevant constraints that need to be met during the resource 
allocation process of IoT data generation are as follows,

•	 One virtual node can only be hosted on one IoT node, as follows, 

 where |N�| represents the number of virtual nodes for a DGR.
•	 One virtual links can be hosted on multiple IoT links, i.e., deployed across 

links, as follows, 

 where |L�| represents the number of virtual links for a DGR.
•	 The remaining storage resources R_S�(n�

i
) of the IoT node cannot be negative, 

as follows, 

•	 The remaining computing resources R_S�(n�
i
) of the IoT node cannot be 

negative, as follows, 

•	 The remaining bandwidth resources R_B�(l�
i
) of the IoT link cannot be 

negative, as follows, 

•	 If the resources of an IoT node are to be allocated to a virtual node, its 
available resources should be sufficient for allocation, as follows, 

(6)
|N�|∑
i=1

�
n�
j

n�
i

= 1, for n�
j
∈ N�,

(7)
|L�|∑
i=1

�
l�
k

l�
i

≥ 1, for l�
k
∈ L�,

(8)R_S�(n�
i
) =S�(n�

i
) −

|N�|∑
j=1

�
n�
i

n�
j

⋅ S�(n�
j
),

(9)R_S�(n�
i
) ≥0, for n�

i
∈ N�.

(10)R_C�(n�
i
) =C�(n�

i
) −

|N�|∑
j=1

�
n�
i

n�
j

⋅ C�(n�
j
),

(11)R_C�(n�
i
) ≥0, for n�

i
∈ N�.

(12)R_B�(l�
i
) =B�(l�

i
) −

|L�|∑
j=1

�
l�
i

l�
j

⋅ B�(l�
j
),

(13)R_B�(l�
i
) ≥0, for l�

i
∈ L�.
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•	 If the resources of an IoT node are to be allocated to a virtual node, its 
available resources should be sufficient for allocation, as follows, 

3.4 � Optimization goal

The goal of this work is to provide energy-efficient resource allocation strategies for IoT 
data generation. In other words, obtain the maximum allocation revenue with the lowest 
energy cost. When resources are successfully allocated to DGRs, energy revenue and 
cost will generate accordingly. Specifically, for i-th DGR, the corresponding revenue 
and cost are defined as follows,

where h
(

l�i
k

)

 represents the hop count of the IoT links hosting l�i

k
 . According to the 

one-to-many relationship between the virtual link and the IoT link shown in Eq. 7, it 
can be observed that the larger the number of hops, the higher the energy cost.

Correspondingly, the optimization goals of this work are long-term revenue, long-
term resource utilization, and allocation success rate. Their calculation methods are as 
follows,

where as Eq.  18, the long-term revenue is expressed as the cumulative sum of 
revenue over the average time. As Eq.  19, the long-term resource utilization is 

(14)if �
n�
i

n�
j

= 1, then R_S�(n�
i
) ≥ S�(n�

j
),R_C�(n�

i
) ≥ C�(n�

j
).

(15)if �
l�
i

l�
j

= 1, then R_B�(l�
i
) ≥ B�(l�

j
).

(16)C
(
G�

i

)
=

|N�i |∑
j=1

(
S�

(
n
�i

j

)
+ C�

(
n
�i

j

))
+

|L�i |∑
k=1

h
(
l
�i

k

)
⋅ B�

(
l
�i

k

)
,

(17)R
(
G�

i

)
=

|N�i |∑
j=1

(
S�

(
n
�i

j

)
+ C�

(
n
�i

j

))
+

|L�i |∑
k=1

B�

(
l
�i

k

)
,

(18)LR = lim
T→∞

∑�DGRs�
i=1

∑T

t=0
R(G𝖵

i
)

T
,

(19)LRU = lim
T→∞

∑�DGRs�
i=1

∑T

t=0
R(G𝖵

i
)

∑�DGRs�
i=1

∑T

t=0
C(G𝖵

i
)
,

(20)
ASR =

∑�DGRs�
i=1

�∏�N�i �
j=1

�n�

n�
j

⋅
∏�L�i �

k=1
� l

�

l�
j

�

�DGRs� ,
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expressed as the ratio of long-term cumulative revenue to long-term cumulative 
cost. As Eq. 20, the allocation success rate is expressed as the ratio of the number of 
successfully allocated DGRs to the total number.

4 � The proposed energy efficient resource allocation method

DGRs arrive at IoT sequentially in chronological order, and IoT allocates 
corresponding resources based on the demands of each DGR. Upon the 
completion of the DGR lifecycle, the resources it occupied are released. Thus, 
the resource allocation process for IoT data generation is a sequential decision-
making process. Motivated by this, we deploy a DRL model to learn and optimize 
the decision-making process.

4.1 � Model design

First, the DRL model needs to model the Markov Decision Process (MDP), which 
includes the following elements,

4.1.1 � State

It refers to the specific situation or configuration that an agent finds itself during 
interaction with the environment. In DRL, an agent learns how to perform a 
task or achieve a certain goal by interacting with the environment. The state of 
the environment describes the current environmental conditions in which the 
agent operates, including various variables, features, or attributes present in 
the environment. The agent perceives its current environmental information 
by observing the state of the environment, and makes actions based on this 
information. In this work, the following IoT environment information is extracted 
as the state,

•	 The remaining storage resources of IoT nodes: R_S�(n�
i
) . The larger the value, 

the more indicative it is that the IoT node is more likely to be used for resource 
provisioning.

•	 The remaining computing resources of IoT nodes: R_C�(n�
i
) . The larger the 

value, the more indicative it is that the IoT node is more likely to be used for 
resource provisioning.

•	 The total remaining bandwidth of the links connected to the current IoT node: 
TR_B�(n�

i
) . The larger the value, the more indicative it is that the IoT node is 

more likely to be used for resource provisioning. 

(21)
TR_B�(n�

i
) =

∑
∀l�

ij

R_B�(l�
ij
),
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 where l�
ij
 represents the IoT links connected to n�

i
.

•	 The distance to other IoT nodes: Dis�(n�
i
) . The smaller its value, the less link 

resource loss the node may cause, and accordingly the more likely to be used 
for resource provisioning. 

Combined with the above environmental information, the following matrix can be 
constructed as the state input of the agent,

where the values in each column are derived from Eqs. 8, 10, 21, and 22 respectively.

4.1.2 � Agent

To ensure comprehensive data exposure, complete state observability, flexible action 
reconfigurability, and robust long-term computability, the customized IoT system 

(22)Dis�(n�
i
) =

∑
∀l�

ij

‖D�(n�
i
) − D�(n�

j
)‖2

1 + h(l�
ij
)

.

(23)S =

⎡⎢⎢⎢⎣

R_S�(n�
1
) R_C�(n�

1
) TR_B�(n�

1
) Dis�(n�

1
)

R_S�(n�
2
) R_C�(n�

2
) TR_B�(n�

2
) Dis�(n�

2
)

⋮ ⋮ ⋮ ⋮

R_S�(n��N��) R_C
�(n��N��) TR_B

�(n��N��) Dis
�(n��N��)

⎤⎥⎥⎥⎦
,

(1) (2) (3) (4)

DRL Agent

IoT Environment
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Information
collection

State
input

Preprocessing and 
aggregation

Server

Apps

User 1

Apps

Internet
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Fig. 3   The IoT framework integrating the proposed DRL model for resource allocation of data genera-
tion. The structure of the agent of the DRL model: 1 Extraction layer. 2 Convolution layer. 3 Probability 
layer. 4 Filtering layer
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architecture integrating the DRL model of the proposed algorithm is shown in 
Fig. 3,. Specifically, IoT devices collect environmental information through sensors 
and other facilities and transmit it to the central server or the edge node for data 
preprocessing and aggregation. Then, the processed data serves as the state input of 
the agent. Among them, the agent is a 4-layer neural network structure, as follows,

•	 Extraction layer: According to the environmental information, the state matrix 
is extracted as the input of the agent, as Eq. 23.

•	 Convolution layer: Use the convolution factor to operate on the state to obtain 
the available resource vector.

•	 Probability layer: Based on the available vectors, the softmax function is used 
to calculate the probability that each IoT node is used to provide resources for 
data generation.

•	 Filtering layer: Filter out IoT nodes and links that do not meet relevant 
conditions according to the constraints in Sect.  3.3, and finally obtain 
candidate nodes and candidate links.

The agent predicts resource allocation actions based on the current status and 
DGRs, which are converted into specific instructions and execute resource 
allocation decisions through the SDN controller or VIM. At the same time, the 
corresponding IoT resources will be allocated to users, and users will release 
the resources after they are finished using them. In addition, while executing the 
decision, environmental reward feedback will be collected for real-time learning 
and optimization of the agent.

It should be noted that to encourage exploration, we introduce randomness 
to the policy through the softmax function of the probability layer, which 
converts the policy output into a probability distribution. At the same time, the 
temperature parameter is used to control the trade-off between exploration and 
exploitation. Higher parameter values encourage broader exploration, increasing 
randomness. Lower parameter values favor strategies that exploit the known 
maximum probability value, i.e., choosing actions that are more likely to result 
in high rewards, encouraging exploitation.

In the feedforward process, the agent receives the current state as input 
and calculates the probability distribution of each action based on the neural 
network, which will be used to select the next action and obtain the new state and 
reward based on the selected action’s interaction with the environment. It should 
be noted that due to the existence of randomness in exploration, the policy 
with the largest probability value is not always selected. During the backward 
propagation process, the gradient is calculated based on the obtained reward and 
state transfer information, and the parameters are updated (details in Sect. 4.2). 
The parameter update process is implemented through backpropagation of the 
gradient, thereby adjusting the agent’s actions to maximize the expected reward.



	 Automated Software Engineering           (2024) 31:66    66   Page 14 of 23

4.1.3 � Action

It is the response of the agent to the environment. The action in this work is a 
discrete action, which is the decision of node resource allocation, that is, which 
physical nodes are selected to allocate to DGR. Its specific representation is as 
follows,

Moreover, the selection of physical links is based on the breadth-first search (BFS) 
of the candidate physical links after selecting the physical nodes.

4.1.4 � Reward

It is a guide for the learning direction of the agent. By continuously interacting 
with the environment, the agent can learn what actions to take in different states to 
maximize its expected reward. This work aims to provide energy-efficient resource 
allocation decisions for IoT data generation, so we define the resource utilization as 
the reward function, as Eq. 19.

4.2 � Model learning

Combined with the gradient backpropagation method and the reward mechanism, 
the optimization process of the agent is guided. Then the loss function iterates in the 
following form,

where L represents the loss function. It should be noted that this work adopts the 
cross-entropy loss. ∇L represents the gradient. � represents the learning rate. If its 
value is too small, the iteration step of the agent will be small, and the convergence 
will be too slow; if its value is too large, the iteration step of the agent will be 
large, and it will easily not converge. Therefore, in this work, � is set to 0.01. In 
addition, it should be noted that the network environment and status in the IoT 
scenario are constantly changing. Therefore, we re-extract the instantaneous network 
environment and status in each training stage to more accurately simulate and 
predict network behavior, thereby better optimizing resource allocation strategies. 
The algorithm flow is shown in Algorithm 1.
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Algorithm 1   The Learning Process of the proposed MD-VNE algorithm.

4.3 � Time complexity

Time complexity analysis is necessary. For the method proposed in this paper, the 
complexity of the online training stage is mainly analyzed. For simplicity, let the 
number of IoT nodes be n. Due to the dynamic characteristics of IoT, each time a 
new VNR arrives, the state matrix needs to be constructed, and the time complexity 
of this process is O(n). In addition, the agent is based on a neural network structure, 
so the time complexity of obtaining actions after processing is O(n2) . After obtaining 
the node resource allocation action, when performing node embedding, each time 
a virtual node is successfully embedded, the state matrix needs to be updated. 
Assuming that q virtual nodes are successfully embedded, the time complexity 
of this process is O(q × n2) . In summary, the time complexity of this algorithm is 
O(n + n2 + q × n2).

5 � Experimental result and analysis

5.1 � Environment simulation configuration

This work uses the GI-ITM tool to generate simulated IoT environments and DGRs. 
The parameter configuration is shown in Table  3. Specifically, the IoT network 
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includes 4 physical domains, 100 IoT nodes, and 600 IoT links. In addition, a total 
of 2000 DGRs are generated, half of which are used in the training process and the 
other half in the testing process. Moreover, to simulate a continuous process, DGRs 
arrive at the IoT following a Poisson process.

5.2 � Training performance

The performance of long-term revenue, long-term resource utilization, and alloca-
tion success rate during the training phase are shown in Figs. 4, 5, and 6, respec-
tively. It can be found that in the early stage of iteration, the agent performed poorly 
because it was in an unfamiliar IoT environment. With the iteration process, the 
agent will actively adjust its decision-making based on positive feedback from the 
environment. After about 100 times, all indicators reach a stable state, which shows 
that the agent can provide reasonable and energy efficient resource allocation deci-
sions for IoT data generation.

5.3 � Testing performance

We chose the following classic VNE algorithms as baselines,

•	 NodeRank (Cheng et al. 2011): A classic heuristic VNE algorithm that allocates 
resources based on the available resources of nodes.

•	 CDRL (Yao et al. 2020): A classic RL-based VNE algorithm that utilizes RL to 
model VNE as a continuous decision-making process.

Table 3   Simulation environment 
configuration in this work

Parameter Configuration

Number of IoT domains 4
Number of IoT nodes 100
Number of IoT links 600
Storage of IoT nodes U[50, 100]
Computing of IoT nodes U[50, 100]
Bandwidth of IoT links U[50, 100]
Number of DGRs 2000
Number of DGRs in the training set 1000
Number of DGRs in the testing set 1000
Number of virtual nodes for DGR 2 − 10

Generation probability of virtual link 50%

Virtual storage for DGR nodes U[1, 20]
Virtual computing for DGRs nodes U[1, 20]
Virtual bandwidth for DGRs links U[1, 20]
The learning rate 0.001
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•	 GCNRL  (Zhang et  al. 2021): A classic VNE algorithm that combines RL and 
graph convolutional neural network (GCN), which uses GCN to extract available 
resource attributes and perform dynamic resource allocation based on the fitness 
matrix.
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The comparative performance of each indicator is shown in Figs. 7, 8, and 9, respec-
tively. It can be verified from the comparison results that the RL-based algorithm is 
better than the heuristic algorithm. In addition, because NodeRank is based on priority 
allocation of node resources, its early effect is better. However, its performance is less 
effective in the long run. Based on RL, the CDRL algorithm performs one step further, 
which comes from effective interaction with the environment. On this basis, GCNRL 
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Fig. 6   Allocation success rate in the training
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introduces a deep neural network to improve the agent’s perception ability, and its per-
formance is better than the previous two. The method proposed in this work is based 
on DRL, which not only combines the interactive decision-making ability of RL and 
the environment, but also combines the ability of deep learning to perceive and extract 
environmental information. Therefore, it outperforms baselines in all three metrics. 
This demonstrates that the proposed method can obtain more resource revenue with 
less resource cost, achieve higher resource utilization as well as successfully implement 
resource allocation for more data generation tasks.
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Fig. 8   Long-term resource utilization in the testing
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6 � Conclusion and future planning

Data generation is one of the key factors driving IoT development and 
application. Aiming at its key resource allocation problem, this work proposes 
a DRL-based VNE algorithm to provide energy efficient resource allocation 
decision-making. We model IoT as a multi-domain physical network and 
construct resource constraints with storage, computing, and bandwidth as 
research objects. In addition, we propose an agent based on a four-layer 
structure, guiding its optimization through the reward mechanism and the 
gradient back-propagation mechanism. Finally, we have conducted extensive 
experiments to verify the effectiveness of the proposed method.

However, in this work, we did not include transmission delay, which is an 
important QoS metric. In future work, we will explore more deeply the impact of 
latency on IoT data generation tasks, and seek how to effectively reduce or optimize 
latency during the resource allocation process. In addition, we plan to study how 
to employ more advanced machine learning and prediction algorithms to more 
accurately capture network dynamics and adjust resource allocation strategies in 
real-time to adapt to these changes.
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